

A BALANCED APPROACH FOR URBAN FLOOD MANAGEMENT: A HO CHI MINH CITY CASE STUDY

Ho Long Phi
The Center of Water Management and Climate Change

GGKF Practitioner's Workshop Bogor, June 3-4, 2013

Content

- Urban flood Risk Uncertainties
- Balanced intervention approach with RDM
- Case study of Ho Chi Minh City
- Conclusions

Urban Flood Risk Uncertainties

Risk Uncertainty Analysis

Risk is a Hazard-depending Spatio-temporal function:

Risk = Hazard Probability * Exposure * Vulnerability

- Hazard Uncertainty resulted by both limatic and non-cimatic impacts
- Exposure Uncertainty due to Urbanization
- Vulnerability Uncertainty due to Social policy and economical development

The Uncertainties

Remarks

- Urban flood risk control implies high level of Uncertainties resulted by both climatic- and non-climatic factors.
- Conventional approach focusing structural intervention may not be flexible to cope with such variations.
- 3 options of Flood Risk Management: Hazard-, Exposureand Vulnerability reduction
- A spatially balanced intervention strategy decides the TIMING- and FRACTIONAL HARMONIZING of the H-E-V.

Balanced Intervention Approach

Capacity Analysis

Based Capacity analysis, the 3 adaptation components and intervention level may be determined.

Multi-leveled Integrated strategy

Mix measures to reduce flood damage under extremity

- Operation/Maintenance capacity, both technical and financial, decide intervention scale and sophisticated level of the measures.
- Social capacity determines the Adaptation level of strategy

Protection

Technical measures to alleviate flood risk within protection level (80-95%)

Integrated strategy and Social capacity

- Hazard control: common option for Low to Mid social capacity; requires less governance/coordination; Top-down strategy; highly vulnerable.
- Exposure control: requires higher governance/coordination;
 Mainstreamed by urban water space policy; Top-down strategy; low vulnerability.
- Vulnerability improvement: requires higher governance/coordination and perception; Mainstreamed by housing policy and Emergency response Plan; Mixed strategy,

CCA is a social issue, not technical.

Ho Chi Minh City case study

Ho Chi Minh City and the basin

• HCMC is impacted directly by the sea and an upstream basin of 40,000 sqkm.

Hydrological impacts

Hydrological anomaly

Hydrological anomalies have occurred since mid 1990s at all stations around Ho Chi Minh City

Land subsidence (1996 - 2010)

Land subsidence has occurred in large scale with highest rate of about 1 cm/year

Revised plan for more balance

- For both Urban and suburban areas with same protection level
- Unintentionally encourage urbanization.
- One basket for all eggs
- Exhausting resources for storm sewer system
- For Lowiana rarar area
- Lower High vulnerability Discouraging urbanization
- Sub**Resources:exhausting**ifety
- Stepwise scheme for limited resources flexibility
- Moverkilled intervention capacity

Scenarios generation

Optioned measures		
1	Levee	
2	Sea barrier	
3	Landfill	
4	Retention space	
5	Storm sewer upgrade	
6	Housing/Infrastructure Improvement	
7	Spatial plan	

5 timings

Strategies			
S1:	1+3 +4 +5 +6		
S2:	1+4+5+7		
S ₃ :	1+4+5+6		
S4:	1+5+6		
S ₅ :	2+3+5		

5 levels of variation

Variations

Sea level rise

Rainfall intensity

Land subsidence

Upstream flood

Exposure

Analyzed scenarios =

5 strategies x 5 times x 5 variations x 5 levels = 625 tests

Risk uncertainty analysis

Socio-Economical Balance

- S4 is the Econ-favored.
- S2 is the Social-favored

S1

▲S₂

S3

\$4\$5

• S1 and S3 were selected candidates for capacity analysis and CBA.

Capacity Analysis

Based on Capacity Analysis, the most feasible candidate and/or staged intervention can be determined.

Capacity checking

Ex: Retention pond in residential area

Issue	Score (1 to 10)	Remark
Technical	6.4	
Data availability Knowledge Uncertainty Consultant Construction Operation and maintenance	7 6 6 8 5	Missing some Environmental issue No technical code Mosquito, pollution
Financial	7-5	
Construction Operation and Maintenance	7 5	Higher cost appartment O/M cost monthly
Social	2.7	
Legal frame work Governance/Management Stake holder's perception	o 3 5	No regulation No experience Why we need it?

The measures can be applied with local stakeholder's aggreement. Good timing is essential.

Intervention options

- Risk perception may be very different among individuals/communities
- Intervention level should be appropriate response
- Long-term vision vs . short term measures

Integrated strategy and Social capacity

- Hazard control: common option for Low to Mid social capacity; requires less governance/coordination; Top-down strategy; highly vulnerable.
- Exposure control: requires higher governance/coordination;
 Mainstreamed by urban water space policy; Top-down strategy; low vulnerability.
- Vulnerability improvement: requires higher governance/coordination and perception; Mainstreamed by housing policy and Emergency response Plan; Mixed strategy,

Conclusions

- The complexity of Climate Change Adaptation strategy depends on uncertainties of both climatic and anthropogenic.
- To cope with uncertainty, Bigger or Earlier interventions maybe not usually preferable.
- RDM may be helpful to explore the Risk Uncertainties and also the balance of CCA strategy.
- An effective and convenient tool package required for RDM.
- Data availability may limit the upscaling of RDM.
- RDM for Risk Uncertainty analysis, Capacity analysis for Feasibility and Timing.

Can we be protected?

Newyork City (Sandy, 2012)

Could we predict the extreme?

Groningen- the Netherlands (Jan, 2013)

Be resilient yourself

Dordrecht – the Netherlands (2012)

