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Abstract

In the present paper, we analyze the optimal energy transition of a two-sector
economy (Energy and Final goods) with exhaustible oil reserves, a renewable source
of energy and a pollution threat. The latter corresponds to a pollution threshold
above which a part of capital is lost (following flooding for instance). Part of the
energy is used as energy services by a representative consumer through a CRRA
utility function and the other part is used as input in a Leontief production function
to produce final goods. Moreover, we assume that both energy sources are com-
plementary. We use the optimality conditions as in Boucekkine et al. (2013) to
show that the optimal energy transition path may correspond to a corner regime in
which the economy starts using both resources, then crosses the pollution threshold
and therefore loses a part of its capital. At the end, the economy never adopts only
renewable energy. This result goes in line with the asymptotic energy transition
arguments stating that the transition to a clean energy may happen only in the
long run. We extend the present model to allow for additional investment in energy
savings technologies. Results mainly show that this additional investment favours
the energy transition in the sense that it increases the time at which the economy
may experience the catastrophe and the welfare of the society. For policy implica-
tions, economic instruments such as taxes on the "dirty" energy, subsidies on the
"clean" energy or incentives for energy saving technologies need to be implemented
in order to promote the energy transition. But those economic instruments should
be carefully designed in line with the asymptotic energy transition result.
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1 Introduction
In order to reduce the global CO2 emissions up to 50 per cent from 2005 to 2050, sev-
eral energy policies are using scenarios that mostly include the adoption of renewable
energy (RE) sources and investments in energy savings technologies (EST). Despite the
growing investments in the production of RE (63 to 244 billion USD from 2006 to 2012
(GEA,2012)), fossil fuels as dirty energy are still mainly used (78.2%) in the world.
Therefore it becomes crucial not only to drastically change the way energy is produced,
but also to look for energy saving strategies. According to the Global Energy Assess-
ment (GEA)-Efficiency pathways, about one-third of overall investment in energy sector
is efficiency related (GEA, 2012). The present paper focuses on the issue of energy tran-
sition that involves both decision of RE adoption and that of the investment in EST. We
mainly analyze the optimal energy transition of a two-sector economy (energy and final
goods) with exhaustible oil reserves, a renewable source of energy and a pollution threat.

The issue of energy transition involves both decision of RE adoption and that of the
investment in EST. The former decision concerns an adoption of clean energy sources
as an alternative that could replace the consumption of the polluting sources of en-
ergy while the latter could help reduce the overall energy consumption. In line with
the economic literature, at the beginning many authors focused differently on the long
run depletion of oil reserves and on the polluting fearture of oil. Dasgupta and Heal
(1974, 1979), Dasgupta and Stiglitz (1981) and Krautkraemer (1986) analyze the long
run depletion of oil reserves while Nordhaus (1994) and Tahvonen (1996, 1997) focus on
the polluting aspects of oil. In this regard, one solution could be to adopt a backstop
technology (a renewable resource for instance) as a clean energy. More recently, several
works (Acemoglu et al., 2014; Amigues et al., 2013 and Tsur and Zemel, 2003) focus on
climate change issues as one of the important reasons that urge the transition to a clean
energy or to clean technologies. As the use of the polluting energy resource generates
a pollution that accumulates over years, the ecological catastrophe may occur at some
point in time. The catastrophic event generates some damages that can be irreversible1

(Forster, 1975; Tavhonen and Withagen, 1996; Ulph and Ulph, 1997; Pindyck, 2002;
Pommeret and Prieur, 2009 and Ayong Le Kama et al., 2011). It can also be partly re-
versible (Tsur and Zemel, 1996 and Naevdal, 2006) or fully reversible (Kollenbach, 2013).

There is no consensus in the literature about how to model the environmental dam-
ages due to pollution. Some authors consider the damages as income loss (Karp and
Tsur, 2011 and Tsur and Withagen, 2012) or social welfare loss (Van der ploeg and
Withagen, 2012 and Prieur et al., 2013). Differently, some other authors focus on pro-
ductive sectors: capital loss (Horii and Ikefuji, 2010) or destruction capacity (Golosov
et al., 2011). The present paper assumes that the economy experiences a catastrophic
event (flooding for instance) when the level of pollution is above a certain critical thresh-

1There are various types of irreversibility. It can be an exhaustion of the natural capacity of regen-
eration (Tsur and Withagen, 2013), an irreversibility in the decision process (Pommeret and Prieur,
2009 and Ayong Le Kama et al., 2011) or a ceiling on the pollution stock (Lafforgue et al., 2008 and
Chakravorty et al., 2012)

2



old. Therefore, the economy loses a part of its productive stock of capital. Moreover, to
support the simultaneous use of both resources, many authors assume a convexity of the
production cost of the renewable energy (Chakravorty et al., 1997; Amigues et al., 2013)
or an increasing extraction costs of fossil fuels (Tsur and Zemel, 2005 and Kollenbach,
2013). For instance, Amigues et al. (2013) study energy transition in a deterministic
framework and consider adjustment costs over production capacity of renewable energy.
They identify three energy regimes in a partial equilibrium setting with an intermediate
regime of simultaneous use of both resources. In addition, several studies assume im-
perfect or perfect substitution between inputs. On the opposite, we consider the case of
an economy with such rigidities that oil and RE source are complementary as in Pelli
(2012). Moreover, we also assume that capital use and energy are complementary, as
in Pindyck and Rotemberg (1983), Boucekkine and Pommeret (2004) or Diaz and Puch
(2013).

In a deterministic framework, Boucekkine et al. (2013) provide first order optimal-
ity conditions in an optimal regime switching problem with threshold effects. These
optimality conditions are the continuity of appropriate co-states and states variables
and that of the Hamiltonian. The present paper is mainly related to the application in
Boucekkine et al.(2013) as it involves together the switching decision to a cleaner en-
ergy sources and the pollution threshold effect as the main drivers of energy transition.
However, the contribution of our paper is threefold. First, we use a two-sector approach
in which the economy requires capital to produce energy that can be used as inputs
to produce a final good. We do not allow a natural regeneration capacity, instead we
consider the irreversibility of the pollution for a loss of capital. In the same vein, we do
not account for a direct pollution damage, but only the loss of the productive capital
due to the occurrence of the catastrophe. In contrast to Boucekkine et al.(2013), we
allow a simultaneous use of both resources (dirty and clean energies). More precisely, we
assume that there is a complementarity between both resources use and also with the
capital in the production of final goods. Second, we solve the model backward by using
the analytical first order optimality conditions. Numerical results show that the optimal
energy transition path may correspond to a corner regime in which the economy starts
using both resources, crosses the pollution threshold by losing a part of its capital and
never adopts only renewable energy. This result goes in line with the asymptotic energy
transition argument stating that the transition to a clean energy may happen only in
the long run. Sensitivity analysis shows that the optimal time to cross the pollution
threshold positively depends on (i) the corresponding capital loss; (ii) the productivity
of capital and energy services and (iii) the level of the pollution threshold. Moreover, it
negatively depends on the discount rate.

Third, we extend our model to the adoption of energy saving technology. Very few
works deal with the adoption of energy savings technologies ( Charlier et al., 2011; De
Groot et al., 2001 and Acemoglu et al., 2012). In order to fill this gap in literature
about the importance of EST in the energy transition, we extend our model to allow
investment decision in EST. More precisely, the economy may decide to invest in energy
saving appliances or in energy efficient systems to reduce the overall energy consumption.
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This investment is additional to that in clean energy to help reach the energy transition
targets. Numerical results mainly show that investments in energy saving technologies
may help to reduce the consumption of energy for the same quality of energy services
and therefore favour the energy transition. The remainder of this paper is structured as
follows. The model is presented in section 2. We analyze the optimal energy transition
path in section 3. Section 4 extends the model to allow investment in EST. Finally, we
conclude in section 5.

2 Model
We consider a closed economy that produces energy and final goods in a general equilib-
rium setting. The economy uses a "dirty" source (exhaustible oil reserves) and a "clean"
source (solar panels) to produce energy. Part of the energy is used as energy services by
a representative consumer through a CRRA utility function. The other part is used as
input in a Leontief production function to produce final goods. The use of dirty energy
by both final goods sector and households has a negative impact on environment. Above
a certain pollution threshold, the economy experiences a catastrophic event (following
flooding for instance) and loses a part of its stock of capital. In the following sections,
we describe the energy sector, the final good sector, households’ utility and pollution
threat respectively.

2.1 Energy sector

Energy is an intermediate good that is produced using Es, a non-renewable and dirty
source and Ex, a renewable and clean source. A representative consumer uses a part
E2 of the energy as energy services while the other part E1 is used as input to produce
final goods. Let us denote respectively E2s, E2x, E1s and E1x the parts of the NRE and
the RE that households use and that the final goods sector uses. We assume that the
production of the NRE is costless. The stock St of the NRE at each time t is generated
by the following dynamics:

dSt = −Estdt (1)

where Est is the rate of extraction of the NRE.

The production of RE requires the use of capital. For instance, to produce solar
(respectively wind) energy, one needs to install some solar panels (respectively wind
turbines) in order to transform solar (respectively wind) into electricity. Hence we assume
a "ϕ-to-one" transformation of K1, a part φ of capital K as follows:

Ex = ϕK1 = ϕφK (2)

where ϕ is the productivity of capital in the RE sector and is greater than one (ϕ > 1).
In our model, pollution only comes from the use of the dirty energy. The following

energy market clearing conditions holds.
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The NRE that the economy produces is fully used as comsumption by households
and as input to produce final goods as well:

Est = E1st + E2st (3)

The total production of the RE is split into the final goods sector and the household
energy consumption:

Ext = E1xt + E2xt (4)

Finally, the total energy that is used in the economy is that from the NRE and the RE.

E1t + E2t = Ext + Est (5)

2.2 Pollution threat

The use of the NRE either as comsumption by household or as inputs to produce final
goods generates GHG emissions. Pollution accumulates in the environment (atmosphere)
according to the following process:

�
Zt = Est (6)

We do not account for the natural regeneration capacity of environment as in Van der
Ploeg and Withagen (2012, 2014). This can be seen as the most pessimistic way to deal
with the threat of pollution to justify the necessity of an energy transition. Moreover,
the economy experiences a catastrophic event (flooding for instance). When the level
of pollution Zt is above a certain critical threshold Z, the economy loses a part θ of its
capital stock.

2.3 Final good sector

In order to produce a final good Y, a part E1 = E1st + E1xt of energy and a part 1− φ
of capital (K2) serve as inputs in a Leontief production function. Interpretation runs
as follows. There exist operating costs whose size depends on the energy requirement
of the capital or to any capital use corresponds a given energy requirement. Such a
complementarity is assumed in order to be consistent with several studies arguing that
capital and energy are complements (see for instance Berndt and Wood, 1974, Pindyck
and Rotemberg, 1983, or more recently Diaz and Puch, 2013). The production function
is defined as:

Y = min{α2K2, β2E1t} (7)

With K2 = (1− φ)K.

Additionally, we assume that both oil and the renewable resource use are comple-
mentary. Two types of justifications can be provided. First, Pelli (2012) proves using an
econometric approach that there exists some complementarity between the dirty sources
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of energy (oil, coal, gases) and the clean ones (hydroelectric, biomass -wood and waste-,
geothermal, solar/photovoltaic, wind and nuclear). The intuition is that the production
of energy using RE source, for instance through solar panels, requires oil to build the
solar panels. Second, the presence of rigidities in a macroeconomic view may explain this
complementary between the oil and RE source as well: it is not that easy to substitute
between oil and electricity provided by solar panels. We define E1t as:

E1t = min{1

ξ
E1st, E1xt} (8)

where ξ is the part of the NRE use in the energy mix.

2.4 Households

We consider a representative household who uses the energy services E2 and consumes
a non-energy good C. The utility U represents the consumer’s preferences that are ex-
pressed by the expected discounted sum of instantaneous CRRA utility flows :

U =

∞̂

0

u(Ct, E2t)e
−ρtdt (9)

and

u =
C1−δ
t

1− δ
+
E1−δ

2t

1− δ
(10)

where ρ is the discount rate and δ is the coefficient of relative risk aversion that is
different from 1.

Both RE and NRE are complementary for the same reasons as in the final goods
sector.

E2t = min{1

ξ
E2st, E2xt} (11)

where ξ is the part of the NRE use in the energy mix.
Households own firms in both energy and final goods sectors. They consume a part

of the final good production and invest the rest to produce clean energy and final goods.

Y t = Ct +
�

K1t +
�

K2t (12)

In the following sections, we first analyze the optimal energy transition path. In
section 4, we provide the numerical results. Finally, we extend the model to the adoption
of energy savings technologies in section 5.
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3 Optimal energy transition path
In this section, we first analyze the general energy transition path that includes the en-
ergy regime switch and the occurrence of a catastrophic event. Three regimes can occur
that correspond to the energy transition path. In the first one, energy is produced by
both oil and the renewable resource that are complementary and the level of pollution
is below the threshold. In the second regime, both energy sources are used again but
pollution is above the threshold. Only renewable resources are used in the third regime.
The second part of this section focuses on corners regimes as specific cases that we com-
pare to the general energy transition path to isolate the optimal path.

We exclude four corners regimes among a total of height corners regimes because they
are unfeasible. The regimes of T1 = 0 combined with T2 > 0, T2 = 0 or T2=∞ cannot
occur because the economy cannot start above the pollution threshold without consuming
the polluting energy. As the RE is a clean energy, if the economy starts with a RE, it will
never cross the pollution threshold. Thus, the regime that corresponds to the case T2 = 0
and T1 > 0 is not possible. Finally, we work with the following corners regimes. The
economy only switches on the energy regime (T1=∞), on the pollution regime (T2=∞),
or the economy Never switches (T1=∞ and T2=∞). The economy can also start with
the RE and never switches on the pollution regime (T1=∞ and T2=0). In the last part
of this section, we numerically solve for the optimal switching time associated with these
corners regime and the general regime and provide the corresponding value function.

3.1 General energy transition path

In the present section, we analyze the general energy transition path that is described
as the following. The economy starts using both sources of energy (RE and NRE) and
therefore starts polluting. The economy accumulates the pollution up to the threshold
Z. Once the level of pollution exceeds this critical level Z, the economy experiences a
catastrophic event that could be a flooding for instance. The economy still uses both
sources of energy before completely switching to the sole use of the clean energy. We
backward solve for the optimal general path by starting from the third regime (sole use
of RE) that is followed by the second regime and lastly by the first regime. We use the
boundary conditions as in Boucekkine et al. (2013) to find the optimal time at which
the economy will cross the critical pollution threshold and will turn to clean energy only.
As it is not possible to get an analytical solution, we numerically solve it.

3.1.1 Third energy regime (RE, Z)

During the third regime, the economy is no longer polluting because it stops using
the dirty energy sources. The clean energy is the only available energy sources in the
economy. Therefore, constraints on pollution accumulation and on NRE accumulation
become both irrelevant. The economy has already crossed the critical pollution thresh-
old and therefore still faces the negative consequences of the catastrophe. In this case,
the social planner maximizes the sum of discounted utility subject to the constraint of
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capital accumulation.

The fact that the capital is split into final goods sector (K2t) and clean energy sector
(K1t) together with the "Leontief conditions" in the final goods sector help deducing the
following equation of capital accumulation (see the proof in Appendix A):

�
K = α2(K − 1

ϕ
E1 −

1

ϕ
E2)− C

The social planner solves the following program:

V3 = Max
´∞
T2

(C
1−δ

1−δ +
E1−δ

2

1−δ )e−ρ(t−T2)dt

st
�
K = α2(K − 1

ϕ
E1 − 1

ϕ
E2)− C

The corresponding Hamiltonian is defined as:

H3 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ[α2(K − 1

ϕ
E1 −

1

ϕ
E2)− C],

with λ the co-state variable related to capital K.

The first order conditions (FOCs) with respect to C, E2 and K respectively give:

C−δ = λ (13)

E−δ2 =
α2

ϕ
λ (14)

and
�
λ

λ
= ρ− α2 (15)

One can easily identify the consumption versus savings arbitrage condition in equa-
tions (13) and (14). It states that the marginal value of capital has to equal the marginal
utility of consumption on the one hand and the marginal utility of energy services on
the other hand. Moreover, condition (15) implies a constant instantaneous return over
capital.

As energy services E1 and capital K2 are complementary in the final goods sector,
we obtain:

Y = α2(K − 1

ϕ
E1 −

1

ϕ
E2) = β2E1 (16)

Using equations (13)-(16), we obtain:

�
K =

α2β2ϕ

α2 + β2ϕ
K − [

α2β2

α2 + β2ϕ
(
α2

ϕ
)−

1
δ + 1]λ

− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

The resolution of the above equation using the transversality condition (see the
proof in Appendix B) gives:
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Kt = − Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2),

where the unknown λT2 will be determined in section 3.1.4 by using boundary conditions.
We can easily deduce the value function V3 during the third regime:

V3 = −
δ[1 + (α2

ϕ
)−

1−δ
δ ]λ

− 1−δ
δ

T2

(1− δ)[α2(1− δ)− ρ]

Finally, we need to impose the non-negativity condition on E1 so that:

E1 =
α2

α2 + ϕβ2

(ϕK − E2) > 0⇔ − Θδϕ

α2 − ρ− δΛ
− (

α2

ϕ
)−

1
δ > 0

3.1.2 Second energy regime (NRE-RE, Z)

The economy uses both RE and NRE sources in the second energy regime. Despite the
use of the dirty energy, the constraint on pollution accumulation is irrelevant because
the economy has already crossed the critical pollution threshold. The economy starts
facing damages from the catastrophe that occurred. The social planner maximizes the
sum of the discounted post event utilities and the discounted value function of the third
regime subject to constraints on capital accumulation and on NRE accumulation.

By using Y = α2K2 because of "Leontief conditions" andK2 = (1−φ)K, the equation
of capital accumulation becomes:

�
K = α2(1− φ)K − C

The complementarity between the NRE and the RE, respectively gives that
E1t = 1

ξ
E1st = E1xt and E2t = 1

ξ
E2st = E2xt. This implies that E1st = ξE1t, and

E2st = ξE2t. By summing up the two precedent expressions, we get that Est = ξ(E1t +
E2t). The latter expression in (1) gives:

�
St = −Est = −ξ(E1t + E2t)

The social planner solves the following program:

V2 = Max
´ T2
T1

(C
1−δ

1−δ +
E1−δ

2

1−δ )e−ρ(t−T1) + V3 ∗ e−ρT2

st


�
K = α2(1− φ)K − C
�
S = −ξ(E1 + E2)

The corresponding Hamiltonian can be written as:

H2 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ1[α2(1− φ)K − C]− λ2ξ(E1 + E2),

with λ1 and λ2 the co-state variable associated with the capital K and the stock of the
NRE St, respectively. The FOCs give:

9



C−δ = λ1 (17)

E−δ2 = ξλ2 (18)
�
λ1

λ1

= ρ− α2(1− φ) (19)

and
�
λ2

λ2

= ρ (20)

Like in the third regime, conditions (17) and (18) highlight the consumption (final
goods and energy services) versus saving arbitrage conditions. Moreover, the instanta-
neous return over capital is constant as well as that of the NRE.

Using equations (17)-(20) we obtain (see proof in Appendix C.1):

�
K − α2(1− φ)K = −λ−

1
δ

1.T1
e(

α2(1−φ)−ρ
δ

)(t−T1) (21)

The resolution of equation (21) gives:

Kt = −(K2 −KT1) ∗ e(
α2(1−φ)−ρ

δ
)(t−T1) +K2,

where K2 is unknown and will be determined by using boundary conditions in section
3.1.4. Finally, by using the fact that the NRE is exhaustible and the fact that we have
crossed the second pollution regime after a period of time T1, we get (see proof in
Appendix C.2):

λ2.T1 = 1
ξ
[(−S0+Z

ξ
+α2(1−φ)

β2
K2(T2−T1)− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)e

α2(1−φ)−ρ
δ

T1∗[e
α2(1−φ)−ρ

δ
∗(T2−T1)−

1]) ρ

δ[e−
ρ
δ
T1−1]

]−δ

where λ2.T1 , KT1 andK2 are unknown that will be determined by boundary conditions
in section 3.1.4.

3.1.3 First energy regime (NR, Z)

At the beginning of the program, the economy starts using both energy sources and
faces a pollution accumulation constraint. A catastrophic event may happen as soon
as the level of pollution reaches its critical threshold that results in a loss of capital
during the following two regimes. We assume that the NRE is abundant (S0 > Z) so
that we do not need to consider the accumulation of the NRE during the first regime.
Therefore, the economy crosses the pollution threshold before the complete depletion of
the NRE. The social planner maximizes the sum of the discounted pre-event utilities
and the discounted value function of the second regime subject to the constraint on
capital accumulation and that on the pollution accumulation. As we do not take into
account of the regeneration capacity of the environment, the equation of the pollution

10



accumulation can be expressed as the opposite of that of the NRE:
�
Z = −

�
S = ξ(E1+E2) .

The social planner solves:

V1 = Max
´ T1

0
[(C

1−δ

1−δ +
E1−δ

2

1−δ )e−ρt]dt+ V ∗2 e
−ρT1

st


�
K = α2(1− φ)K − C
�
Z = ξ(E1 + E2)

The Hamiltonian can be written as:

H1 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ1[α2(1− φ)K − C] + λ2ξ(E1 + E2),

with λ1 and λ2 the co-state variables associated to the capital K and to the stock of
pollution Zt, respectively. The FOCs give:

C−δ = λ1 (22)

E−δ2 = −ξλ2 (23)
�
λ1

λ1

= ρ− α2(1− φ) (24)

�
λ2

λ2

= ρ (25)

FOCs (22)-(25) give(see proof in Appendix C.3):

�
K − α2(1− φ)K = −λ−

1
δ

1.0 e
(
α2(1−φ)−ρ

δ
)t

We solve the above equation to get:

Kt = −(K1 −K0)e(
α2(1−φ)−ρ

δ
)t +K1

Finally, we use the fact that at the end of the first regime, we cross the pollution thresh-
old and we obtain:

1
ξ
Z = −(−λ2.0ξ)

− 1
δ ∗ δ

ρ
[e−

ρ
δ
T1−1]+α2(1−φ)

β2
K1∗T1− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)

[
e(

α2(1−φ)−ρ
δ

)∗T1 − 1
]

This implies that:

λ2.0 = −1
ξ
[(−Z

ξ
+α2(1−φ)

β2
K1∗T1− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)[e(

α2(1−φ)−ρ
δ

)∗T1−1])∗ ρ

δ[e−
ρ
δ
T1−1]

]−δ

where λ2.0 and K1 are unknown and will be determined in section 3.1.4 using bound-
ary conditions.
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3.1.4 Boundary conditions

Following Boucekkine et alii (2013), we use three types of boundary conditions: conti-
nuity of λ1 , continuity of K and the equality of the Hamiltonian at the switching time.
The co-state variable λ2 associated with the pollution stock Z is not continuous at the
switching time T1 because Z is fixed to Z. At the switching time T2, Z can be freely
chosen and becomes continuous but it no longer exist during the third regime because
the RE is not polluting. The continuity of λ1 together with that of K help determine
K1, K2, KT1 , KT2 , λT2 , λ2.0 and λ2.T1 (see the proof in Appendix E). We then si-
multaneously and numerically solve the equality of Hamiltonians at the switching time
T1 and T2 to get T1 and T2. Now, let us look at corners regimes before providing the
numerical value function.

3.2 Corners regimes

As we exclude four corners regimes among a total of height corners regimes because they
are unfeasible, we present in this section only the four relevant ones.

3.2.1 Sole switch to the energy regime (T1=∞)

This case is a corner regime in which the economy never exceeds the critical pollution
threshold and therefore only switches to the sole adoption of the clean energy. The
economy starts using both oil and the renewable resource that are complementary and
the pollution is below its critical level. After some time T , it switches to the sole use of
renewable energy before the level of pollution crosses the pollution threshold. Therefore,
the economy escapes the catastrophe forever. To get the switching time T, it is sufficient
to set T1=∞ and T2 = T .

3.2.2 Sole switch above the pollution threshold level (T2=∞)

This case corresponds to the transition from the first regime to the second regime with-
out the switch to the third regime. Again, the economy starts using both oil and the
renewable source of energy with a level of pollution that is below the threshold level.
Then, the economy switches to the regime in which both energy sources are still used but
now, the level of pollution is above its critical threshold and the economy never adopts
the renewable energy. To get the switching time T and the dynamics of variables, one
just needs to set T2=∞ and T1 = T .

3.2.3 No switch (T1=∞ and T2=∞)

On the no switch transition path, the economy always uses both oil and the renewable
source of energy. Moreover, it never solely uses the RE and the level of pollution remains
below its critical threshold forever. This energy transition path corresponds to the first
regime and one does not need to use boundary conditions to get the switching time. It
is sufficient to set T1=∞ and use the transversality conditions that give K1 = 0.

12



3.2.4 Starting with RE (T1=∞ and T2=0)

On this transition path, the economy never uses the NRE and therefore does not pollute.
The pollution threshold becomes then irrelevant. It corresponds to the third regime
without any pollution threat. In this case, we just need to set T1=∞ and T2=0.

4 Numerical results
In this section, we numerically solve for the switching times T1 and T2 and calculate the
value functions of the general energy path and that of each corner regimes. We present
the parameter values that are used to get the numerical results. We also provide the
numerical value functions and the sensitivity analysis.

4.1 Parameter values

The parameters values are chosen as follows. As we are concerned about environmen-
tal issues (pollution) that can lead to catastrophic event, we set the discount rate ρ to
0.05, so that people are more patient and concerned about the consequences of their
behaviour in the future. This value of 0.05 is standard in economics literature. The
sensitivity analysis will help to point out how the pollution would evolve in the case
people are impatient (high discount factor). We consider an initial stock of the NRE S0

equals to 28000 and the pollution threshold Z = 1000 as a benchmark. In the final goods
sector, we set the parameter α2 that is related to capital to 0.0001 and that of energy
β2 to 0.02 in the Leontief function. The factor of capital transformation into energy ϕ is
set to 1.5. We also assume that to get one unit of energy services, the economy should
provide 1.5 units of the NRE such that ξ=1.5. The part of capital that is lost due to
the catastrophe θ is set to 0.05. The value of the degree of relative risk aversion δ and
that of the initial level of capital are set to 2 and 95, respectively. Finally, we take φ=0.1.

We compare the value functions among them and find out the optimal one that gives
the highest value function. We also perform a sensitivity analysis to check for the impact
of each parameters on the switching time.

4.2 Value functions

The numerical results are summarized in the table below.
Energy transition path values functions

General energy transition path –36.7722
T1=∞, -42.4142
T2=∞ -17.6568

T1=∞ and T2=∞ -19.2455
T1=∞ and T2=0 -50.8961

Table 1: Numerical results
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The optimal energy transition path is the one that gives the highest value function to
the planner. It corresponds to T2=∞ corner regime. It means that the optimal energy
transition path can be described as follows. The economy starts using both sources of
energy. Then, it crosses the pollution threshold and loses a part of its capital. The
sole adoption of the RE is never optimal for the economy. One could notice that the
corner regime that corresponds to T1=∞ and T2=∞ case is close to that of the optimal
one. This may be justified by the fact that the economy does not lose/gain enough by
refraining to pollute more in order to never cross the pollution threshold. One could also
remark that the general energy transition path is far from being the optimal one. Hence,
we can conclude that it exists numerical values of the parameters that imply that it is
not be optimal to only adopt RE. This surprising result goes in line with the asymptotic
energy transition arguments that state that the complete transition to the sole use of
clean energy may happen only in the long run.

4.3 Sensitivity analysis

We summarize the sensitivity analysis in the table below.

ρ θ S0 α2 β2 Z
T1 - + small effect + + +

Table 2: sensitivity analysis

Sensitivity analysis shows that the optimal time to cross the pollution threshold
positively depends on (i) the corresponding capital loss, (ii) the productivity of capital
and energy services, (iii) the level of the pollution threshold. Moreover, it negatively
depends on the discount rate.

More impatient social planner is willing to extract more NRE and will quickly cross
the critical pollution threshold. As the damage from the catastrophic event is high,
people will fear about the negative consequences of their "dirty energy" use and will
reduce it. This could help them staying longer in the first regime before crossing the
pollution threshold. Likewise, people will reduce their use of energy resource as long
as the productivity of capital and energy services is high. The higher is the pollution
threshold that could provoke the catastrophic event, the more people will stay in the
pre-event regime. Finally, the initial stock of the NRE does not matter. The social
planner mainly cares about the management of the initial stock of the NRE so that the
switching time T1 is robust with respect to the initial stock of the NRE.

5 Introducing Investment in Energy Saving Technolo-
gies (EST)

Let us recall that E1 and E2 are energy services in the final goods sector and for house-
holds respectively. The final goods sector uses E1s of the NRE and E1x of the RE, while
households use E2s of the NRE and E2x of the RE. At each period of time, in addition
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to consumption and investments in energy sector and final goods sector, the economy
now invests a part of the final goods production qt in energy savings technologies. We
assume that the investment qt serves to reduce by ϑ(q) units the resources that the econ-
omy needs in order to get the same energy services. Implicitly, it means that we do not
account for a scale effect2. Let us assume that ϑ(q) is an increasing function (ϑ′(q) > 0)
and exhibits decreasing marginal returns ( ϑ′′(q) < 0) in the abatement investment. ϑ(q)
is increasing in the sense that the more the economy invests in EST, the more it reduces
the use of the energy resource to get a given energy services. Moreover, as varθ(q) is
increasing, we assume that ϑ(q) is concave in order to have a maximum for ϑ(q). Also,
we avoid a complete elimination of the use of energy resources so that it will require an
infinite amount of investment to do so ( lim

q→∞
Ei−ϑ(q) = 0 with i ∈ {1, 2} and ϑ(0) = 0 ).

Due to the investment qt in energy saving technologies, the dynamics of capital, of
the NRE and that of pollution are modified, while the utility of the household remains
the same (see the proof in Appendix D). Note that those dynamics do not change
in terms of the extraction of energy resource, but only in terms of the energy services.
The same amount of energy resource provides more energy services when the energy
saving technologies are used. In comparison with the previous model, the social planner
has to consider one additional control variable (investment qt) to solve for the optimal
energy transition. The main changes in the results are the following (see the proof
in Appendix F). The level of capital at each period of time during the three regimes
has an additional negative component. In fact, the economy additionally uses a part of
income to invest in EST. This part could have been invested in productive sector (final
goods and energy) or consumed by households. As the share of the income that goes to
investment is reduced by investment in energy saving technologies, one should expect a
decrease in capital.

As before, we also discuss corner regimes that we compare to the general energy
transition path to isolate the optimal one. In order to make our numerical results
comparable, we use the same set parameters values as before. Additionally, we set the
productivities of investment in EST both at household level and at industry level σ to 0.2.
We numerically solve for the switching times T1 and T2 and calculate the value functions
of the general energy path and that of each corner regimes. We compare the value
functions among them and find out the optimal one that gives the highest value function.
We also perform a sensitivity analysis to check for the impact of each parameters on
the switching times. The numerical results are threefold. First, investments in energy
saving technologies do not alter the optimal energy transition path which remains the
asymptotic transition to the sole use of renewable energy. The second point is that
investments in energy saving technologies increase the time at which the economy may
experience the catastrophe and that of the sole adoption of the renewable energy. In fact,
investments in energy saving technologies help to reduce the consumption of energy for
the same quality of energy services and therefore help to reduce the pollution. Although

2One should also consider that the investment qt induces a scale effect. This makes the present
model very complex and unsolvable because of the interaction that may appear between qt and all the
precedent control variables like the energy services.
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investment in EST reduces the share of the income that goes to investment in both the
final goods sector and the renewable energy production sector, it favours the energy
transition. Last but not least, investment in EST increases the welfare of the society.
Then, it is profitable for the economy to combine both adoption of renewable energy and
investments in energy savings technologies.

6 Conclusion
This paper makes four contributions. First, it proposes a general appraisal of optimal
switching problems of energy transition exhibiting (i) the possibility of a catastrophe due
to pollution accumulation, and (ii) technological regimes with the adoption of renewable
energy. Secondly, it applies the optimal control material in Boucekkine et al. (2013)
to address the problem of the optimal energy transition. We solve the model backward
by using the analytical first order optimality conditions. This paper numerically show
that the optimal energy transition path may correspond to a corner regime in which
the economy starts using both resources, crosses the pollution threshold by losing a part
of its capital and never adopts a regime with only renewable energy. This result goes
in line with the asymptotic energy transition argument stating that the transition to a
clean energy may happen only in the long run. The fourth contribution of this paper
is to extend this model to the adoption of energy savings technologies. We mainly find
that investments in energy saving technologies do not alter the optimal energy transition
path. Moreover, investments in energy saving technologies favour the energy transition
in the sense that it increases the time at which the economy may experience the catas-
trophe and that of the sole adoption of the renewable energy. Finally, as investment in
EST increases the welfare of the society, it is then profitable to combine both adoption of
renewable energy and investments in energy savings technologies. However, investments
in EST reduce the share of the income that goes to investment in both the final goods
sector and the renewable energy production sector.

As policy implications, we could recommend that it is important to adopt some
economic instruments such as taxes on the "dirty" energy, subsidies on the "clean" energy
or incentives for energy saving technologies in order to promote the energy transition.
Also, it is profitable to design economic instruments that jointly target the promotion
of clean energy and incentives for investments in energy saving technologies. But those
economic instruments should be designed to meet the requirements of a transition to a
sole use of clean energy in the long run. In fact, as a quick and full transition is not
optimal for the economy, we should not expect any immediate transition to an economy
that only uses the renewable sources of energy. The present paper can be extended
to investigate the optimal taxes/subsidies that may favour the adoption of renewable
energy and the investments in energy savings technologies in line with the asymptotic
energy transition result.
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8 Appendix

8.1 Appendix A

Let us recall that the equation of capital accumulation is:

�
Kt = Y t − Ct (26)

We also know that:

Y = min{α2K2, β2E1t},

Where,

K = K1 +K2

and
Ex = ϕK1

Ex = ϕK1 implies that K1 = Ex
ϕ
.

Then,

K2 = K −K1 = K − Ex
ϕ

(27)

From "Leontief conditions" in final goods sector, we have that:

Y = α2K2 = β2E1t (28)

During the third regime, only the RE is used so that we have the following equalities:

E1xt = E1t,
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and
E2xt = E2t.

By summing up the two above expressions, we get that:

Ext = E1t + E2t. (29)

Plugging (38) into (35) gives:

K2 = K − (E1t + E2t)

ϕ
(30)

Let put (39) into (36) and get:

Y = α2K − α2
E1t + E2t

ϕ
(31)

Finally, use (40) in the equation of capital accumulation (26) to get that:

�
Kt = α2Kt − α2

E1t + E2t

ϕ
− Ct.

8.2 Appendix B

To determine the expression of capital in the third regime, we need to solve the following
equation of capital accumulation for the capital Kt:

�
K = ΛK −Θλ

− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

where Λ = α2β2ϕ
α2+β2ϕ

and Θ = α2β2
α2+β2ϕ

(α2

ϕ
)−

1
δ + 1.

First, let us make a change of variables as follows:

x = Ke−Λ(t−T2).

We have that:

�
xeΛ(t−T2) =

�
K − ΛK = −Θλ

− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

This implies that
�
x = −Θλ

− 1
δ

T2
e(

α2−ρ
δ
−Λ)(t−T2)

The solution of the above equation is:

xt = − Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2
e(

α2−ρ
δ
−Λ)(t−T2) + x,

Hence,

Kt = − Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2) +K3,
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where K3 = xeΛ(t−T2).

We now use the transversality conditions to determine K3:

lim
t→∞

λtKte
−ρ(t−T2) = 0

This implies that lim
t→∞

xλT2 = 0, for α2(1 − δ) < ρ with K3 = xeα2(t−T2). This is

true if and only if x = 0 and therefore K3 = 0. K3 = 0 implies that:

Kt = − Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2).

8.3 Appendix C.1

The expression of capital in the second regime is determined from FOCs as follows.
From (19) and (20), we deduce that:

λ1 = λ1.T1e
(ρ−α2(1−φ))(t−T1) (32)

and
λ2 = λ2.T1e

ρ(t−T1) (33)
(32) in (17) and (33) in (18) respectively lead to:

Ct = λ
− 1
δ

1.T1
e(

α2(1−φ)−ρ
δ

)(t−T1)

and
E2t = (ξλ2.T1)

− 1
δ e−

ρ
δ

(t−T1)

By using the above expression of C, the equation of capital accumulation becomes:

�
K − α2(1− φ)K = −λ−

1
δ

1.T1
e(

α2(1−φ)−ρ
δ

)(t−T1)

By using the same variable change as in Appendix B, the solution of the above
equation is:

Kt −K2 = −λ−
1
δ

1.T1
∗ δ

α2(1− φ)(1− δ)− ρ
e(

α2(1−φ)−ρ
δ

)(t−T1).

To determine λ1.T1 , let us take Kt at t=T1:

KT1 −K2 = −λ−
1
δ

1.T1
∗ δ

α2(1− φ)(1− δ)− ρ
.

This implies that:

λ
− 1
δ

1.T1
= (K2 −KT1) ∗

α2(1− φ)(1− δ)− ρ
δ

Plugging this last expression into Kt gives:

Kt = −(K2 −KT1) ∗ e(
α2(1−φ)−ρ

δ
)(t−T1) +K2,

where K2 is unknown and will be determined by using boundary conditions in section
3.1.4.
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8.4 Appendix C.2

We assume that the NRE is exhaustible and we have crossed the second regime after a
period of time T1. Then, the initial stock of the NRE S0 is equal to the sum of the part
of the NRE that is used during the first regime which corresponds to the total amount
of pollution Z and the part of the NRE that the economy uses during the second regime.
We have that:

S0 =

ˆ T1

0

ξ(E1t + E2t)dt︸ ︷︷ ︸
Z

+

ˆ T2

T1

ξ(E1t + E2t)dt

This implies that:

S0 − Z =

ˆ T2

T1

ξ(E1t + E2t)dt =
ξα2

β2

ˆ T2

T1

Ktdt+ ξ

ˆ T2

T1

E2tdt

with S0 > Z.
Let solve separately each part of the the Right Hand Side (RHS) of the above equa-

tion:

χ1 =
ξα2

β2

ˆ T2

T1

Ktdt

and

χ2 = ξ

ˆ T2

T1

E2tdt.

We get that:

χ1 =
ξα2

β2

ˆ T2

T1

[−(K2 −KT1) ∗ e(
α2(1−φ)−ρ

δ
)(t−T1)]dt+

ξα2

β2

ˆ T2

T1

K2dt,

⇒ χ1 = − ξδα2

β2(α2(1− φ)− ρ)
∗(K2−KT1)∗

[
e(

α2(1−φ)−ρ
δ

)(T2−T1) − 1
]
+
ξα2(1− φ)

β2

K2 [(T2 − T1)]

and

χ2 = ξ

ˆ T2

T1

(ξλ2.T1)
− 1
δ e−

ρ
δ

(t−T1)dt

⇒ χ2 = −ξ(ξλ2.T1)
− 1
δ ∗ δ

ρ

[
e−

ρ
δ

(T2−T1) − 1
]

Using the above expressions in S0 − Z = χ1 + χ2, we get that:

1
ξ
(S0 − Z) = −(ξλ2.T1)

− 1
δ ∗ δ

ρ

[
e−

ρ
δ

(T2−T1) − 1
]

+ α2(1−φ)
β2

K2 [(T2 − T1)]− δα2

β2(α2(1−φ)−ρ)
∗

(K2 −KT1) ∗
[
e(

α2(1−φ)−ρ
δ

)(T2−T1) − 1
]
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8.5 Appendix C.3

The level of capital at each time during the first regime is determined as follows. (??)
in (22) and (??) in (23) respectively lead to:

Ct = λ
− 1
δ

1.0 e
(
α2(1−φ)−ρ

δ
)t

and
E2t = (−λ2.0ξ)

− 1
δ e−

ρ
δ
t

As before we also replace the expression of C into the equation of capital accumulation
to get:

�
K − α2(1− φ)K = −λ−

1
δ

1.0 e
(
α2(1−φ)−ρ

δ
)t

We solve the above equation to get:

Kt −K1 = −λ−
1
δ

1.0 ∗
δ

α2(1− φ)(1− δ)− ρ
e(

α2(1−φ)−ρ
δ

)t

At t=0, K0 = −λ−
1
δ

1.0 ∗ δ
α2(1−φ)(1−δ)−ρ +K1. This implies that:

λ
− 1
δ

1.0 = (K1 −K0) ∗ α2(1− φ)(1− δ)− ρ
δ

.

Replacing this expression into the expression of Kt, we get:

Kt = −(K1 −K0)e(
α2(1−φ)−ρ

δ
)t +K1

At the end of the first regime, we cross the pollution threshold so that:

Z =

ˆ T1

0

ξ(E1t + E2t)dt

By replacing E1t and E2t as in the second regime, we get:

1
ξ
Z = −(−λ2.0ξ)

− 1
δ ∗ δ

ρ
[e−

ρ
δ
T1−1]+α2(1−φ)

β2
K1∗T1− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)

[
e(

α2(1−φ)−ρ
δ

)∗T1 − 1
]

This implies that:

λ2.0 = −1
ξ
[(−Z

ξ
+α2(1−φ)

β2
K1∗T1− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)[e(

α2(1−φ)−ρ
δ

)∗T1−1])∗ ρ

δ[e−
ρ
δ
T1−1]

]−δ

where λ2.0 and K1 are unknown and will be determined in section 3.1.4 using bound-
ary conditions.
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8.6 Appendix D

The equation of capital accumulation becomes:

�
Kt = Y t − Ct − qt (34)

We also know that:

Y = min{α2K2, β2E1t},
Where, {

E1t = min{1
ξ
E1st, E1xt}+ θ1(qt), t < T2

E1t = E1xt + θ1(qt), t > T2

t < T2 corresponds to the first two regimes in which both types of energy are simul-
taneously used, while t > T2 denotes the third regime that uses only the RE.

K = K1 +K2

and
Ex = ϕK1

Likewise, E2t is defined as:{
E2t = min{1

ξ
E2st, E2xt}+ θ2(qt), t < T2

E2t = E2xt + θ2(qt), t > T2

Ex = ϕK1 implies that K1 = Ex
ϕ
.

Then,

K2 = K −K1 = K − Ex
ϕ

(35)

From "Leontief conditions" in final goods sector, we have that:

Y = α2K2 = β2E1t (36)

Using the complementarity between the NRE and RE, we respectively get that:{
E1t − θ1(qt) = 1

ξ
E1st = E1xt, t < T2

E1t − θ1(qt) = E1xt, t > T2

and {
E2t − θ2(qt) = 1

ξ
E2st = E2xt, t < T2

E2t − θ2(qt) = E2xt, t > T2

This implies that: {
E1st = ξ(E1t − θ1(qt)), t < T2

E1st = 0, t > T2
,{

E2st = ξ(E2t − θ2(qt)), t < T2

E2st = 0, t > T2
,
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E1xt = E1t − θ1(qt),∇ t,

and
E2xt = E2t − θ2(qt),∇ t.

By summing up the four above expressions, we get that:{
Est = ξ(E1t + E2t)− ξ(θ1(qt) + θ2(qt)), t < T2

Est = 0, t > T2
(37)

and
Ext = (E1t + E2t)− (θ1(qt) + θ2(qt)),∇ t. (38)

Plugging (38) into (35) gives:

K2 = K − (E1t + E2t)− (θ1(qt) + θ2(qt))

ϕ
(39)

Let put (39) into (36) and get:

Y = α2K − α2
(E1t + E2t)− (θ1(qt) + θ2(qt))

ϕ
(40)

Finally, to get the equation of capital accumulation in the third regime let us use
(40) in the equation of capital accumulation (34) to get that:

�
Kt = α2Kt − α2

(E1t + E2t)− (θ1(qt) + θ2(qt))

ϕ
− Ct − qt.

By using (37), the equation of the NRE accumulation and that of pollution respec-
tively becomes:

�
St = −Est = −ξ(E1t + E2t) + ξ(θ1(qt) + θ2(qt))

and

�
Zt = Est = ξ(E1t + E2t)− ξ(θ1(qt) + θ2(qt)).

8.7 Appendix E

1. Continuity of λ1

• At t = T1

{(K1 −K0) ∗ α2(1− φ)(1− δ)− ρ
δ

}−δe(ρ−α2(1−φ))T1︸ ︷︷ ︸=

First regime

{(K2 −KT1) ∗
α2(1− φ)(1− δ)− ρ

δ
}−δ︸ ︷︷ ︸

Second regime

This implies that :

KT1 = −(K1 −K0) ∗ e
α2(1−φ)−ρ

δ
T1 +K2 (41)
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• At t = T2

{(K2 −KT1) ∗
α2(1− φ)(1− δ)− ρ

δ
}−δ ∗ e

α2(1−φ)−ρ
δ

(T2−T1)︸ ︷︷ ︸=

Second regime

{(−KT2 ∗
α2 − ρ− δΛ

Θδ
}−δ︸ ︷︷ ︸

Third regime

That leads to:

KT2 = (K0 −K1) ∗ Θ[α2(1− φ)(1− δ)− ρ]

α2 − ρ− δΛ
∗ e

α2(1−φ)−ρ
δ2

[(1+δ)T1−T2] (42)

2. Continuity of K

• At t = T1

As the part θ of capital is lost from the first to the second regime, we have that:
K = (1− θ)K, with K the capital in the second regime and K the capital in the
first regime.

K is continuous at T1 so that:

−(K2 −KT1) +K2︸ ︷︷ ︸=

Second regime

(1−θ) [−(K1 −K0)e(
α2(1−φ)−ρ

δ
)T1 +K1]︸ ︷︷ ︸

First regime

This gives:
KT1 = (1− θ)

{
(K0 −K1) ∗ e

α2(1−φ)−ρ
δ

T1 +K1

}
(43)

As (41) and (43) are the same expression of KT1 , we have the following equality:

(41)=(43), that implies:

−(K1 −K0) ∗ e
α2(1−φ)−ρ

δ
T1 +K2 = (1− θ)

{
(K0 −K1) ∗ e

α2(1−φ)−ρ
δ

T1 +K1

}
This helps to deduce the expression of K2 as a function of K1:

K2 = θ(K1 −K0) ∗ e
α2(1−φ)−ρ

δ
T1 + (1− θ)K1 (44)

• At t = T2

From the second regime to the third, capital is not lost so that: K = K, with K
the capital in the second regime and K the capital in the third regime.

Continuity of capital implies that:

−(K2 −KT1) ∗ e(
α2(1−φ)−ρ

δ
)(T2−T1) +K2︸ ︷︷ ︸=

Second regime

− Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2︸ ︷︷ ︸
Third regime

Using continuity of λ1 and (41) we have the following equality:

λT2 = λ1T2 = λ1T1∗e(ρ−α2(1−φ))(T2−T1) = {(K2−KT1)∗
α2(1−φ)(1−δ)−ρ

δ
}−δ∗e(ρ−α2(1−φ))(T2−T1)
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and KT1 −K2 = −(K1 −K0) ∗ e
α2(1−φ)−ρ

δ
T1 .

From that, we get:

(K1−K0)∗e
α2(1−φ)−ρ

δ
T1∗e(

α2(1−φ)−ρ
δ

)(T2−T1)+K2 = − Θδ
α2−ρ−δΛ∗(K1−K0)∗α2(1−φ)(1−δ)−ρ

δ
∗

e
α2(1−φ)−ρ

δ
T1 ∗ e

(α2(1−φ)−ρ)
δ

(T2−T1)

That gives:

K2 =

{
Θ[α2(1− φ)(1− δ)− ρ]

α2 − ρ− δΛ
+ 1

}
(K0 −K1) ∗ e

α2(1−φ)−ρ
δ

T2 (45)

(44)=(45) leads :

K1 =
f(T1, T2)

f(T1, T2) + θ − 1
K0 (46)

with f(T1, T2) = Γ ∗ e
α2(1−φ)−ρ

δ
T2 − θe

α2(1−φ)−ρ
δ

T1 and Γ = −1− Θ[α2(1−φ)(1−δ)−ρ]
α2−ρ−δΛ

(46) in (45) leads: K2 = −Γ
{
K0 − f(T1,T2)

f(T1,T2)+θ−1
K0

}
∗ e

α2(1−φ)−ρ
δ

T2

(43) becomes: KT1 = (1− θ) ∗
{
K0 − f(T1,T2)

f(T1,T2)+θ−1
K0

}
∗ e

α2(1−φ)−ρ
δ

T1

(42) becomes: KT2 =
{
K0 − f(T1,T2)

f(T1,T2)+θ−1
K0

}
∗ Θ[α2(1−φ)(1−δ)−ρ]

α2−ρ−δΛ ∗e
α2(1−φ)−ρ

δ2
[(1+δ)T1−T2]

and λT2 = {(K1 −K0) ∗ e
α2(1−φ)−ρ

δ
T1 ∗ α2(1−φ)(1−δ)−ρ

δ
}−δ ∗ e(ρ−α2(1−φ))(T2−T1)

=
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}−δ
∗ e(ρ−α2(1−φ))T2

Also, we have:

λ2.0 = −1
ξ
[(−Z

ξ
+α2(1−φ)

β2

f(T1,T2)
f(T1,T2)+θ−1

K0∗T1− α2(1−φ)δ
β2(α2(1−φ)−ρ)

( f(T1,T2)
f(T1,T2)+θ−1

K0−K0)[e(
α2(1−φ)−ρ

δ
)∗T1−

1]) ∗ ρ

δ[e−
ρ
δ
T1−1]

]−δ

and

λ2.T1 = 1
ξ
[(−S0+Z

ξ
+α2(1−φ)

β2
K2(T2−T1)− α2(1−φ)δ

β2(α2(1−φ)−ρ)
(K1−K0)e

α2(1−φ)−ρ
δ

T1∗[e
α2(1−φ)−ρ

δ
∗(T2−T1)−

1]) ρ

δ[e−
ρ
δ
T1−1]

]−δ

3. Dynamics of variables

We use the above results to get an expression for state and control variables.

• First regime

Kt =
{
K0 − f(T1,T2)

f(T1,T2)+θ−1
K0

}
∗ e(

α2(1−φ)−ρ
δ

)t + f(T1,T2)
f(T1,T2)+θ−1

λ1 =
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}−δ
∗ e(ρ−α2(1−φ))t

λ2 = λ2.0e
ρt
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Ct =
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}
e(

α2(1−φ)−ρ
δ

)t

E2t = (−λ2.0ξ)
− 1
δ e−

ρ
δ
t

E1t = α2(1−φ)
β2

[
{
K0 − f(T1,T2)

f(T1,T2)+θ−1
K0

}
∗ e(

α2(1−φ)−ρ
δ

)t + f(T1,T2)
f(T1,T2)+θ−1

K0]

• Second regime

λ1T1 =
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}−δ
∗ e(ρ−α2(1−φ))T1

λ1 =
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}−δ
∗ e(ρ−α2(1−φ))t

λ2 = λ2.T1e
ρ(t−T1)

Kt = −(K1 −K0) ∗ e(
α2(1−φ)−ρ

δ
)t +K2

E1t = α2(1−φ)
β2

Kt

Ct = λ
− 1
δ

1.T1
e(

α2(1−φ)−ρ
δ

)(t−T1)

E2t = (λ2.T1ξ)
− 1
δ e
−ρ
δ

(t−T1)

• Third regime

λT2 =
{

(−K0 + f(T1,T2)
f(T1,T2)+θ−1

K0) ∗ α2(1−φ)(1−δ)−ρ
δ

}−δ
∗ e(ρ−α2(1−φ))T2

Kt = − Θδ
α2−ρ−δΛλ

− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

λt = λT2e
(ρ−α2)(t−T2)

Ct = λ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

E2t = (α2

ϕ
)−

1
δλ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2)

E1t = α2

α2+β2ϕ
(ϕKt − E2t)

4. Equality of Hamiltonian

The last optimality condition is the equality of Hamiltonian at the switching time
T1 and T2.

• At t = T1: the equality is between the first and the second regime.

H1(T ∗1 ) = H2(T ∗1 )

⇒E1−δ
2

1− δ
+ λ1α2K + λ2ξ(E1 + E2)︸ ︷︷ ︸ =

First regime

E1−δ
2

1− δ
+ λ1α2K − λ2ξ(E1 + E2)︸ ︷︷ ︸

second regime

(47)
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• At t = T2: the equality is between the second and the third regime.

H2(T ∗2 ) = H3(T ∗2 )

⇒E1−δ
2

1− δ
+ λ1α2K − λ2ξ(E1 + E2)︸ ︷︷ ︸ =

Second regime

E1−δ
2

1− δ
+ λ[α2(K − 1

ϕ
E1 −

1

ϕ
E2)]︸ ︷︷ ︸

Third regime

(48)

Solving simultaneously and numerically (47) and (48), we can get T1 and T2. Now,
let look at corners solutions before providing the value function given by the nu-
merical results of the switching time.

8.8 Appendix F

8.8.1 Third regime

The Hamiltonian is the following:

H3 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ[α2Kt − α2

(E1t + E2t)− (ϑ1(qt) + ϑ2(qt))

ϕ
− Ct − qt].

All the previous FOCs remain the same. The main change comes from the FOC with
respect to the investment qt:

ϑ
′

1(qt) + ϑ
′

2(qt) =
ϕ

α2

(49)

The equation (49) highlights the arbitrage condition between the reduction of resources as
a gain from the energy savings technologies and the constant marginal cost of investment.
The solution of (49) gives the optimal investment in energy saving technologies. Now,
let us specify the energy saving ϑi(qt) as a class of power function cqσit where i ∈ {1, 2}
and c, σi are the parameters. Moreover, we set c = 1 and σi ∈ [0, 1] in order to meet the
required properties defined before.

Without loss of generality, let us assume that investment in EST yields the same
productivity either at household level or at industry level such that σ1 = σ2 = σ. Thus,
we get that:

q∗ = [
ϕ

2σα2

]
1

σ−1 (50)

By replacing the optimal value of the investment (50) into the equation of capital
accumulation, we can solve the model as before to get the following expression of capital.

Kt = − Θδ

α2 − ρ− δΛ
λ
− 1
δ

T2
e(

α2−ρ
δ

)(t−T2) − $

Λ
,

where $ = 2Λ
ϕ

( ϕ
2σα2

)
σ
σ−1 − ( ϕ

2σα2
)

1
σ−1 and the others are the same as defined before.
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In this new expression of capital, we have an additional component −$
Λ

due to the
investment in EST. This additional component is negative in the sense that it negatively
affects the level of capital. In fact, the economy additionally uses a part of income
to invest in EST. This part could have been invested in productive sector (final goods
and energy) or consumed by households. Hence the share of the income that goes to
investment is reduced.

8.8.2 Second regime

The Hamiltonian is the following:

H2 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ1[α2(1− φ)K − Ct − qt]− λ2ξ[(E1t + E2t)− (ϑ1(qt) + ϑ2(qt))].

As before, the only change is the FOC with respect to qt:

ϑ
′

1(qt) + ϑ
′

2(qt) =
λ1

ξλ2

(51)

Using the same specifications as before, the solution of (51) is :

q∗ = [
λ1

2σξλ2

]
1

σ−1 (52)

The equation (52) helps to solve the model during the second regime as before. The
expression of the capital during the second regime becomes:

Kt−K2 = −λ−
1
δ

1.T1
∗ δ

α2(1− φ)(1− δ)− ρ
e
α2(1−φ)−ρ

δ
(t−T1)+[

λ1.T1

2σξλ2.T1

]
1

σ−1
σ − 1

α2(1− φ)σ
e−

α2(1−φ)
σ−1

(t−T1).

We should also notice here that the level of capital at each period of time during the
second regime has a second negative component. As the share of the income that goes
to investment is reduced by investment in energy saving technologies, one should expect
a decrease in capital.

As we did in the case without any investments in EST, all the NRE are extracted
during the first and the second regimes such that:

S0 − Z =

ˆ T2

T1

ξ(E1t + E2t − ϑ1 − ϑ2)dt,

By solving the above equation, we get that:

S0−Z = ξ α2

β2
K2 [T2 − T1]+H0

[
e−

ρ
δ

(T2−T1) − 1
]
λ
− 1
δ

2.T1
+H1

[
e
α2(1−φ)−ρ

δ
(T2−T1) − 1

]
λ
− 1
δ

1.T1
+

H2

[
e
−α2(1−φ)

σ−1
(T2−T1) − 1

]
[
λ1.T1
λ2.T1

]
1

σ−1 +H3

[
e
−α2σ(1−φ)

σ−1
(T2−T1) − 1

]
[
λ1.T1
λ2.T1

]
σ
σ−1 (Eq A)

where H0 = −ξ δ−1
δ

δ
ρ
, H1 = − ξδ2α2

β2[α2(1−φ)(1−δ)−ρ][α2(1−φ)−ρ]
, H2 = − ξ(σ−1)2α2

β2(2σξ)
1

σ−1 σα2
2(1−φ)2

and H3 = 2ξ(σ−1)

α2(1−φ)σ(2σξ)
σ
σ−1
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8.8.3 First regime

The Hamiltonian is the following:

H1 =
C1−δ

1− δ
+
E1−δ

2

1− δ
+ λ1(α2(1− φ)K − Ct − qt) + λ2ξ[(E1t + E2t)− (ϑ1(qt) + ϑ2(qt))]

Like in the second regime the optimal investment in EST is:

q∗ = [− λ1

2σξλ2

]
1

σ−1 (53)

We then solve the equation of capital accumulation to get the following expression
of capital during the first regime.

Kt −K1 = −λ−
1
δ

1.0

δ

α2(1− φ)(1− δ)− ρ
e
α2(1−φ)−ρ

δ
t + [− λ1.0

2σξλ2.0

]
1

σ−1
σ − 1

σα2(1− φ)
e
−α2(1−φ)

σ−1
t

We still have an additional negative component of the capital due to investment in
energy saving technologies.

At the end of the first regime, we cross the pollution threshold so that:

Z =

ˆ T1

0

ξ(E1t + E2t − 2ϑ∗t )dt

By solving the above equation as before, we get the following expression:

Z = ξ α2

β2
K1T1+H0

[
e−

ρ
δ
T1 − 1

]
(−λ2.0)−

1
δ+H1

[
e
α2(1−φ)−ρ

δ
T1 − 1

]
λ
− 1
δ

1.0 +H4

[
e
−α2(1−φ)

σ−1
T1 − 1

]
λ

1
−δ
1.0 +

H3

[
e
−α2σ(1−φ)

σ−1
T1 − 1

] [
λ1.0
λ2.0

] σ
σ−1

, (Eq B)

whereH0, H1 andH3 are the same as defined before andH4 = ξδ(σ−1)α2

β2α2((1−φ)[α2(1−φ)(1−δ)−ρ]
.

8.8.4 Boundary conditions

Like in the case without any investments in EST, we use some boundary conditions as in
Boucekkine et alii (2013). Continuity of λ1 and continuity of K at the switching times
T1 and T2 give the following equation.

H5λ
− 1
δ

1.0 −
$

Λ
= H6λ

− 1
δ

1.0 +H7

[
λ1.0

2σξλ2.T1

] 1
σ−1

+H8

[
−λ1.0

2σξλ2.0

] 1
σ−1

+ (1− θ)K0 (Eq C)

WhereH5 = − Θδ
α2−ρ−δΛe

α2(1−φ)−ρ
δ

T2 , H6 = δ
α2(1−φ)(1−δ)−ρ

[
θe

α2(1−φ)−ρ
δ

T1 + (1− φ)− e
α2(1−φ)−ρ

δ
T2

]
,

31



H7 = σ−1
α2σ(1−φ)

[
−e

ρ−α2(1−φ)
σ−1

T1 + e[ ρ
σ−1

T1−α2(1−φ)σ−1
T2]
]
andH8 = (σ−1)(1−θ)

α2σ(1−φ)

[
−1 + e

−α2(1−φ)
σ−1

T1
]
.

Eq A, Eq B and Eq C express three different relationships between λ1.0, λ2.0 and
λ2.T1 that we can simultaneously solve. Additionally, we simultaneously and numerically
solve the equality of Hamiltonians at the switching time T1 and T2 to get T1 and T2.
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