Ecosystem Services and Green Growth

Jeffrey R. Vincent

(Duke University / Beijer Institute / SANDEE)

Inaugural Conference
World Bank Green Growth Knowledge Platform
Mexico City, Jan. 12-13, 2012

Objective

- To review evidence on the effect of changes in the supply of ecosystem services, and programs to increase their supply, on near-term economic growth
 - Near-term: few years to a decade or so
 - Economic growth: conventional monetary measure of change in economic output (e.g., GDP)

CONSTITUENTS OF WELL-BEING ECOSYSTEM SERVICES Security PERSONAL SAFETY **Provisioning** SECURE RESOURCE ACCESS ■ FOOD SECURITY FROM DISASTERS ■ FRESH WATER ■ WOOD AND FIBER ■ FUEL **Basic material** for good life Freedom of choice ADEQUATE LIVELIHOODS Regulating SUFFICIENT NUTRITIOUS FOOD and action Supporting SHELTER CLIMATE REGULATION NUTRIENT CYCLING **OPPORTUNITY TO BE** ACCESS TO GOODS FLOOD REGULATION ■ SOIL FORMATION ABLE TO ACHIEVE DISEASE REGULATION PRIMARY PRODUCTION WHAT AN INDIVIDUAL WATER PURIFICATION **VALUES DOING** Health AND BEING ■ STRENGTH FEELING WELL Cultural ACCESS TO CLEAN AIR AND WATER AESTHETIC SPIRITUAL EDUCATIONAL Good social relations RECREATIONAL **...** SOCIAL COHESION ■ MUTUAL RESPECT ABILITY TO HELP OTHERS LIFE ON EARTH - BIODIVERSITY Source: Millennium Ecosystem Assessment

ARROW'S COLOR

Potential for mediation by socioeconomic factors

Low

Medium

High

ARROW'S WIDTH

Intensity of linkages between ecosystem services and human well-being

— Weak

Medium

Strong

Regulating services

- Already reflected in overall GDP, but misallocated between sectors
- Paper focuses on domestic services

Key conditions for near-term growth stimulus

- 1. A conservation program must either restore a degraded ecosystem or reduce the loss of an intact one
- 2. This positive ecosystem change must increase the supply of an ecosystem service
- 3. The increased supply must occur within a short period of time
- 4. The service must be economically valuable

4. The service must be economically valuable

- Valuation literature: emphasis on forest ecosystem services
- General finding of studies by economists: small, with great spatial variation
 - Lampietti & Dixon (1995), Pearce (2001), Croitoru (2007): on average,
 regulating services = 5-15% of total value of forest goods and services
 - Timber ≈ ½- ½
 - Timber harvest ≈ 0.2% of global GDP
 - All services of forests—not just regulating—probably < 1% of global GDP
 - Caveats: incomplete estimates, suboptimal management
 - Costanza et al. (1997): forest ecosystem services = 25% of global GDP; all ecosystem services ≈ 2 × global GDP

Inadequate control for confounding factors \rightarrow exaggerated estimates of service values

- Flood mitigation by forests
 - Bradshaw et al. (2007): natural forest area has significant, negative
 effect on flood frequency in 56 developing countries during 1990-2000
 - van Dijk et al. (2009): population density explained 83% of the variation in reported flood frequency, with forest cover explaining less than 1% of the remaining 17%

Pollination services by natural habitat

- Observed negative relationship between crop yield and distance to natural habitat typically assumed to be due to reduced pollination (Ricketts et al. 2008)
 - But: productivity can decline for other reasons (e.g., soil fertility)
- Meta-analysis (Ricketts et al. 2008): number and diversity of pollinators declines significantly with distance, but fruit set does not
 - → pollinators not scarce
- Damage costs (e.g., reduction in gross revenue) and replacement costs (e.g., renting bee hives) can exaggerate economic losses: inadequately account for farmer responses (McConnell and Bockstael 2005)
 - Winfree et al. (2011): > 2× for watermelons in NJ and PA

Spatial variation in values: Pattanayak & Kramer (2001)

Figure 2. Map of Indonesia (arrow points to Flores Island)

Figure 3. Rivers of Manggarai (37 watersheds in west-central Flores)

Kecamatan (county) 6A	Drought mitigation benefits of 25% forest cover increase* (\$)**	
	median	min/max
Borong	4.27	-10.67/20.45
Elar	-6.74	-12.76/4.73
Langke Rembong	-9.57	-12.72/3.42
Pembantu Borong	3.36	-9.74/19.54
Pembantu Elar	10.15	3.31/15.28
Pembantu Lambaleda	-8.06	-14.15/-1.32
Pembantu Ruteng	-4.25	-6.23/-3.38
Ruteng	-0.86	-10.46/6.37
Satarmese	3.35	-11.52/10.12

2. Positive ecosystem change must increase the supply of an ecosystem service

- Need better evidence that this happens
 - Forests and floods, droughts
 - Natural habitat and pollination
- Services are not necessarily spatially compatible
 - E.g., timber and water quality
 - Diseconomies of scope: optimal ecosystem management may require spatial specialization, instead of managing for all services in all areas

3. Increased supply of a service must occur within a short period of time

- Restore degraded ecosystems
 - Review of 240 studies (Jones and Schmitz 2009): "startling evidence that most ecosystems globally can, given human will, recover from very major perturbations on timescales of decades to half-centuries"
 - Focused on supporting services
 - "many of the ecosystems considered were relatively undegraded at the outset" (Bullock et al. 2011, p. 544)

Prevent loss of intact ecosystems

- Local effects, where ecosystems being lost rapidly and provide important services
- Greatest potential for large impact: REDD (transboundary)

1. Conservation program must either restore a degraded ecosystem or reduce the loss of an intact one

- Programs to reduce ecosystem loss
 - Protected areas (PAs)
 - Payments for ecosystem services (PES)
 - Integrated conservation-development projects (ICDPs)
- Impact evaluations of conservation programs
 - Ecosystem loss with program vs. without program
 - Still rare: 6-12 studies for each type, limited geographical coverage
 - Focus on reduced deforestation
 - Estimated impact: very small

Are impact evaluations too pessimistic?

- Reduced deforestation not only or primary objective of forest protection: reduced logging, reduced poaching
- Protecting less threatened ecosystems might be economically efficient
 - Site 1: deforested in n years
 - Site 2: deforested now
 - Site 1 should be protected if: $\frac{V_1}{P_1(1+r)^n} > \frac{V_2}{P_2}$

 V_i = conservation value

 P_i = acquisition price

r = discount rate

 Results of impact evaluations need to be better integrated with information on conservation benefits and costs

Poverty alleviation

- Major reason for development organizations' emphasis on economic growth
- Conservation programs and poverty alleviation
 - Theory
 - PAs: negative effect
 - PES: mixed effects
 - Practice
 - PAs (impact evaluations): surprisingly large, positive local effects
 - Seemingly due to tourism
 - Conservation vs. poverty: win-win or win-draw, but "wins" in different places
 - PES (case studies): small gains for rural landowners, little for rural landless
 - If like conditional cash transfer programs, then MPC payments is high;
 - → stimulus is near-term, not long-term

Research needs

- Rigorous evaluation of the impacts of conservation programs
 - Broader range of outcomes besides deforestation
 - Stronger effort to relate estimates of conservation effectiveness to conservation benefits and costs
 - Continued progress toward understanding spatial variation
- Time path of service losses and economic impacts when ecosystems degrade
 - Careful control for potentially confounding factors
- Improved methods for scaling up microlevel studies on ecosystem service values, so can be linked to standard statistics on economic performance
- More research on the growth impacts of cultural services

Near-term growth vs. Long-run welfare

- Focus on near-term economic growth does not imply that ecosystem protection is justified only if it stimulates nearterm growth
 - Ecosystem protection is justified whenever it raises long-run social welfare, regardless of the consequences for near-term growth

Thank you!

Jeff.Vincent@duke.edu