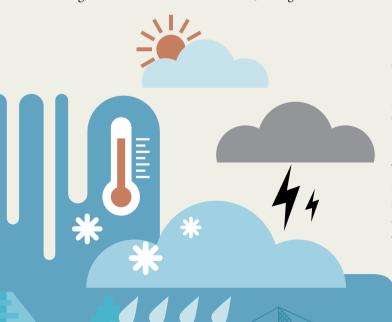


RESEARCH DEPARTMENTS

ENVIRONMENTAL POLICY RESEARCH GROUP Division of Environmental Strategy Division of Environmental Strategy Division of Climate and Air Quality Division of Vater Environment Division of Natural Resources Conservation Division of Resource Circulation

• Division of Environmental Health

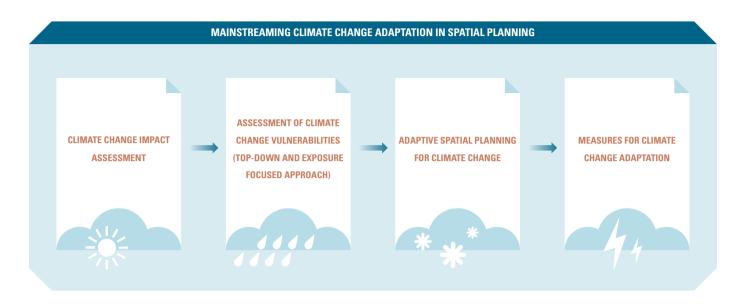


DONG HYUN KIM I Research Fellow, Korea Adaptation Center for Climate Change

Spatial Planning Method and Applications for Climate Change Adaptation (I)

This research has proposed a methodology that uses the recent topic of community based adaptation in climate change, and it is differentiated from any other research by highlighting the participation and communication within the planning process.

Living with weather phenomena is one of the oldest survival instincts of the human race. Before the industrial revolution, mankind generally adapted their lifestyle to natural climate in order to survive and prosper. As the society moved into industrialization, the urbanized lifestyle have resulted in the production of greenhouse gases which has led to climate change such as global warming, decreased/increased river flows, changes in the mean


sea levels and increase in extreme weathers. These changes have challenged the human livelihood, and once again weather phenomena have become the focal point of discussion as one of the threats to human life. Reducing the cause of weather phenomena (mitigation) and actively preparing for the impacts of accelerating climate change (adaptation) are the efforts to take action against climate change, and these have become an important aspect in the national policies.

However, the efforts to proactively adapt to the possible damages of climate change is still at a basic level, and the adaptation is still not mainstreamed or incorporated within the individual policies and plans. This is mainly due to the unguided discussions on climate change adaptation in the policy and plan making process. The uncertainty of climate change itself is another contributing factor.

To overcome the limits of the existing measures, the current literature on climate change adaptation recommends place-based approach (Adger and Kelly, 1999; Turner et al., 2003; Measham et al., 2011). This means considering the characteristics and variables within the extent of a geographical area and societal and economical criteria of the place, and using them to form policies and plans. In order to enable proposal and strict implementation of the policies relating to adaptation, city as a planning unit is identified as the most suitable (Measham et al., 2011).

> On this basis, the purpose of this paper is to propose spatial planning tools that would

IGURE 1 ROLE OF ADAPTIVE SPATIAL PLANNING FOR CLIMATE CHANGE

make the adaptation process practical by internalizing climate change, an external factor, within the urban planning. Initially, the most meaningful planning unit for the adaptive spatial planning was identified, and the compatibility with other spatial planning issues was reviewed. Furthermore, spatial planning elements central to the compatibility were considered in recommending a methodology that considers adaptation within the spatial planning. In this paper, strategic planning and scenario planning that are currently being considered as a way of future orientated planning were utilized. The study reviewed the utilization of the proposed spatial planning tools within the existing systems and the compliance with the standards of the decision making process and the internalizing process. Specifically, the spatial planning at community level which was often neglected in the existing planning process was considered. Finally, it explores how the local knowledge could be reflected in the spatial planning and how the local needs and collective rationality could be brought forward.

The proposed spatial planning methodology consists of three stages: developing theoretical background for the policies; establishing a framework for adaptive spatial planning; and deducing the ultimate method of adaptive spatial planning. Firstly, the policy background should go through theoretical consideration to extend the strategic planning and scenario planning to include climate change adaptation and to incorporate adaptive spatial planning definitions and characteristics. To take action against the external changes due to climate change, the future adaptation scenario for a city and a community are combined and formed, based on the future foresights. Moreover, this method is a communicative planning process based on resilience strategy.

Further discussion on a planning space implies two things - human and lifestyle. This implies practical participation from the members of the society in the planning process and approaching from the community point of view through deliberation. Hence, the spatial problems resulting from the issues faced by the society should be addressed. Therefore, it is important to gather local conditions and local knowledge in the area that represents the local lifestyle, and reflect them within the communication process.

Moving on from the theoretical background, in order to take action against the changes of the external conditions due to climate change, this paper constructs an integrated future adaptation scenario of a city and a community, based on future foresights, and proposes a communicative planning process based on a resilience strategy. Figure 1 shows the adaptive spatial planning for climate change in relation to the climate change impact assessment and the climate change vulnerabilities assessment. The climate change vulnerabilities assessment that played an important role in finding a solution for climate change adaptation would need to change from the existing index focused approach to exposure focused approach, and the areas discussed in the existing approach would need to supplement the adaptive spatial planning in accordance with the local conditions and knowledge.

To supplement the uncertainty of climate change predictions, the adaptive spatial planning for climate change includes communication and participation stages as part of the planning process. This planning process is based on communicative rationality, and it prepares for the uncertainty within the community level through foresight and governance. The adaptive

spatial planning reduces the uncertainty, deduces the future and is used as a tool in scenario strategy. The adaptive spatial planning for climate change includes the traditional regulatory spatial planning as a tool, sets a common goal in preparation for the future, and is given a free hand to achieve consensus and co-operation. The main difference between traditional spatial planning and adaptive spatial planning is favoring the value of resilience over economic efficiency. The adaptive spatial planning includes conditional assumptions rather than focusing on excessively idealistic and unrealistic future visions. It also considers viability and co-operation, and aims to outline a feasible future through communication process. To achieve these, the adaptive spatial planning utilizes anticipatory

governance, community governance and multi-level governance. During the stage of forming a policy framework for the adaptive spatial planning, 15 of 68 existing official plans that were relevant to climate change adaptation were reviewed, and city/district master plans and lower level plans were found to be suitable for internalizing climate change adaptation. Analyzing the selected spatial plans has revealed that population and spatial structure were at the centre of the spatial planning policy, and subsequently population was divided into demography and social economy, and spatial structure into development and conservation areas. The development area is then divided further into land use, infrastructure, environment, safety and leisure, so each section

TABLE 1 DIFFERENCE BETWEEN TRADITIONAL SPATIAL PLANNING AND ADAPTIVE SPATIAL PLANNING FOR CLIMATE CHANGE

THEME	TRADITIONAL SPATIAL PLANNING	ADAPTIVE SPATIAL PLANNING FOR CLIMATE CHANGE
SPATIAL PLANNING STRUCTURE AND PROCESS	Structure and process based on predict and plan; Planning process based on instrumental rationality	Structure and process based on foresight, scenario and strategic plan; Planning process based on communicative rationality
SCOPE OF SPATIAL PLANNING	Urban planning, living space, community, etc all included in the scope (emphasis on different elements may differ depending on the trend of the spatial planning in each country)	Urban planning, living space, community, etc are considered but mainly focused on community planning
DIRECTION OF PLANNING	Planning based on regulations and permissions; regulatory plan to restore negative external effects of the market failure	Regulatory planning is used as a tool, but in preparing for the future a common goal is set through consent and co- operation, and a free hand is given in developing a plan
RESILIENCE, REDUNDANCY AND DECENTRALIZATION	Focused on economic efficiency for effective utilization of limited resources; Planning basic infrastructure around the population	Some redundancy created through decentralization but resilience built within the area; Preference over taking actions for the future rather than economic efficiency
SETTING DIRECTIONS FOR THE FUTURE	Planning focused on an ideal person in the future; Often unrealistic and unable to connect with various alternatives	Conditional assumptions included, and planning based on the foresight formed through deliberation on the possibilities and co-operation; Agree realistic future through consultation process
GOVERNANCE	Restricted governance, lack of experts, limited participation from the stakeholders; Associated with hierarchical and performance based process; Residents and various urban workers as passive users rather than planners or executers	Anticipatory governance; Community governance; Multi-level governance
ADAPTATION SCENARIO	Growth scenarios based on quantitative growth in terms of population, economy, industry, land use, etc	Spatial adaptation at community level

would form the spatial planning framework and internalize adaptation. Under the concept of resilience, the resilience strategy approach for climate change adaptation at different levels was also discussed. The case studies of climate change adaptation spatial planning were reviewed to make the planning methodology more explicit.

Finally, based on the aforesaid theoretical background and the policy outlines, planning sheets that could be used in adaptive spatial planning framework and specific modules were produced. Based on the theoretical background, the adaptive spatial planning methodology was created using the following five principles.

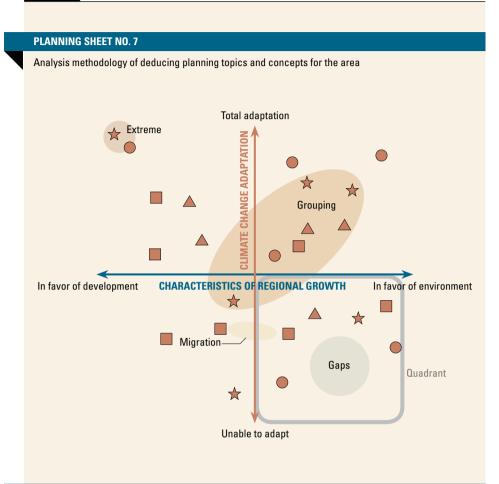
The first principle is to agree future governance based on scientific evidence. The local conditions and the scientific evidence for the climate change impacts are used to form a base, and the future plan is agreed with inputs from the public. The second principle is to form a strategic plan based on the concepts of resilience in order to integrate climate change adaptation and regional growth. The capacity of the area for climate change and the integrity of the regional economic are based on similar themes, so climate change adaptation and regional growth can be naturally integrated. The third principle is to integrate regional growth and climate change adaptation within the plan. In order to introduce climate change adaptation into the mainstream of the spatial

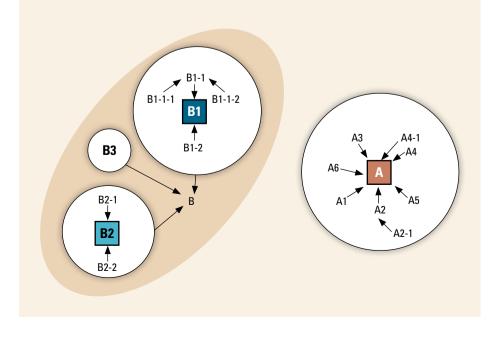
FIGURE 2 RELATIONSHIP BETWEEN CONCEPT ON RESILIENCE, PLANNING COMPONENTS & STRATEGY FOR INTERNALIZING ADAPTATION

planning, it needs to link up with the regional growth, effectively utilize the planning methodology, and encourage consensus and co-operation from the local residents. The fourth principle is to create a planning process based on communication and involvement which would increase the adaptive capacity of the community. The capacity to grow and the ability to adapt to climate change have many similar areas, and participation in the planning process brings many benefits in terms of education. Fifth principle is to come up with innovative planning alternative through discussions with the participants. Specific modules based on communicative planning process could draw out ideas from various people, and deduce innovative alternatives by processing these ideas.

Based on these principles, the adaptive spatial planning framework for climate change is divided into the following six stages:

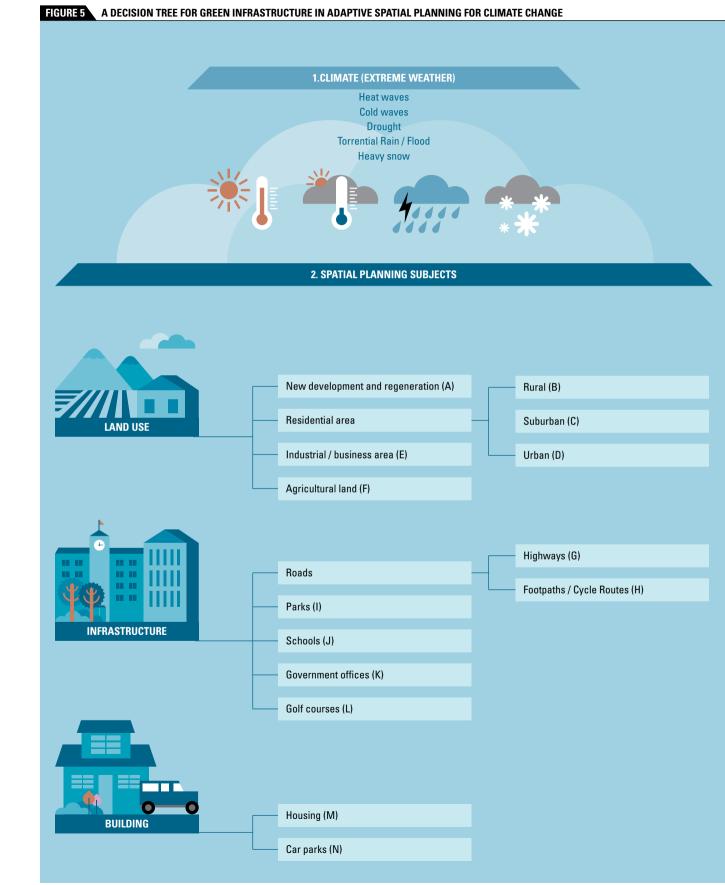
- 1. Initial investigation of the area and the environment
- 2. Establish the context of the area and the environment
- 3. Set a goal for the plan (regional growth / climate change adaptation)
- 4. Draw up scenarios for the area and internalize adaptation strategy
- 5. Produce a spatial plan for the area
- 6. Carry out projects from the spatial plan and construct pathways


19 specific planning sheets with suggestions and requirements for spatial planning were produced for these six stages. The planning participants involved in the planning stage can use these sheets to share and learn local conditions and knowledge, and agree future plans through communication.


		PLANNING METHODS FOR CLIMATE
Preliminary meeting	STEP 1	Initial investigation of existing area and conditions
vith the participants	Identify a location for spatial planning $_{\rm 4}$	2 Initial investigation of climate change issues
	Identify planning group and participants group	3 Plan and host a preliminary meeting with the participants
	${\scriptstyle \psi}$ Initial investigation of the area and the	 Organize participants and form a working group
	environment	5 Produce an involvement map of the area
	STEP 2	
irst workshop held vith the participants	Establish the context of the area and the	6 Data gathering and initial investigation of the area, and disco a common theme
	environment	
		Set planning topics and concepts to capture local context
		Identify local needs
	↓ ↓	Carry out SWOT analysis to obtain local knowledge
ocal residents	STEP 3	10 Data mining to deduce local context
o cast a vote	Set a goal for the plan (regional growth / climate change adaptation)	Form essential glossary to draw plan objectives
	STEP 4	2 Set plan objectives
econd workshop held vith the participants with	Draw up scenarios for the area and	13 Come up with four scenarios for the area
nputs from the experts	internalize adaptation strategy	Find a solution for each scenario
		15 Produce a strategy to internalize adaptation with the experts
resentation	STEP 5	(6) Produce an adaptive spatial plan for the area
t local galleries	Produce a spatial plan for the area	Present initial findings on alternatives at public meetings and
		exhibit at local galleries
hird workshop	STEP 6	18 Design blocks and networks for the alternative plan
vith the participants	Projects and pathways for the area according to the spatial plan	Future plans for the area and storytelling
	according to the spatial plan	
E		

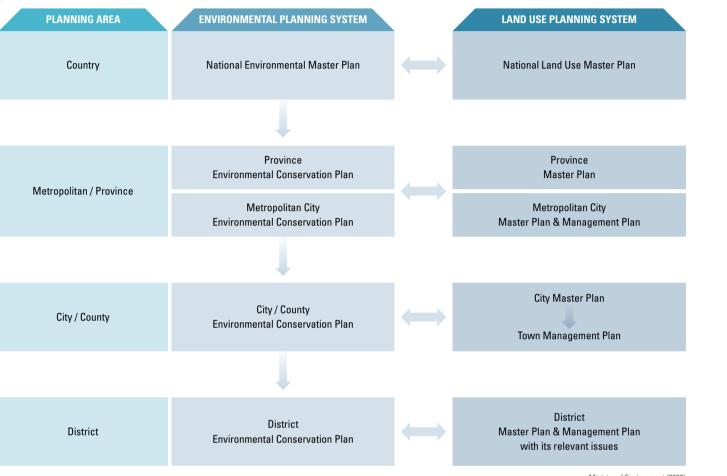
PLANNING SHEET NO. 10

Ways to gather local views from the residents using text mining


These planning sheets identify local planning objectives and local needs, which are then systematized to deduce a scenario and a strategy for adaptation. Design and product renovation tools such as ERAF system diagram, Entity Position Map and Grouping Matrix are adapted in the process. For the application of green infrastructure as a spatial alternative for climate change adaptation, a decision tree was created in terms of climate and spatial planning subjects.

Through the proposed spatial planning framework, the planning participants can collectively produce a final plan for the local area and construct the related projects and pathways.

The proposed adaptive spatial planning methodology for climate change can be applied to two systems, the land use/urban planning system and the environmental planning system.


For the spatial planning system, adaptive spatial planning can be introduced via two measures: one through the urban planning system; and the other through the environmental planning system. The specific details are compared below.

Introducing through the urban planning system has advantages of considering the suitability and the implementation of amending the existing plans. However, the implementation can become a low priority and insufficient consideration of climate change can be the disadvantages. In terms of the environmental planning system, the adaptive spatial planning can be combined with other elements of the environmental planning so the changes to the guidelines and the procedures can be easier. However, there is the inconvenience of revisiting the elements relevant to the regional growth, and its implementation cannot be guaranteed. Another way of implementing the deduced plan in the existing system is to use the neighborhood planning and

DONG HYUN KIM I Research Fellow, Korea Adaptation Center for Climate Change

FIGURE 6 RELATIONSHIP BETWEEN ENVIRONMENTAL PLANNING AND LAND USE PLANNING SYSTEMS

Ministry of Environment (2007).

the community participation system. Generally, the neighborhood planning, which includes suggestions from the community, is focused on the regional growth and the environmental improvements. The adaptive spatial planning also has regional growth as one of its values, so for the effective implementation a sufficient communication process with the local residents is needed to combine the contents of regional growth and climate change adaptation. In the community participation system, it can be used for running the climate change adaptation planning process or prioritizing the specific projects from the plan.

The proposed adaptive spatial planning methodology for climate change can be used by the local groups to find ways to adapt and operate the spatial plans. The proposed methodology is not a unified implementation plan, but a method to achieve both regional growth and climate change adaptation in the local management area. It will reflect the appropriate local needs and

become a way to deduce spatial planning that considers adaptation scenario.

This research has proposed a methodology that uses the recent hot topic of climate change adaptation in real planning terms, and it is differentiated from any other research by highlighting the participation and communication process within the planning stage. Through this research, the scenario planning and the strategic planning methods are combined, and climate change adaptation and the concepts of resilience are mainstreamed. Furthermore, methodologies used in design and product renovation process are applied in the spatial planning to identify creative planning alternatives. Through this participation and communication process within the planning stage, an increase in the local capacity to adapt to climate change and mainstreaming climate change adaptation are anticipated.

TABLE 4 MEASURES TO INSTITUTIONALIZE ADAPTIVE SPATIAL PLANNING FOR CLIMATE CHANGE

ELEMENTS	MEASURE 1 (Introduce within the urban plann
PLANNING AREA	Internalizing adaptation within: whole planning area and living sp county master and management p planning area Adaptive spatial planning within:
	neighborhood planning area (com
GUIDELINE FORMATION	Maintain high level plans for the c append a separate guideline
SUITABILITY WITH OTHER PLANS	Priority given over suitability with development and growth plans (in infrastructure and use area, etc)
PRACTICALITY IN ESTABLISHING AND ADAPTING THE PLAN	Likely to be suggested as one of th to design a low carbon green city established and applied in the pro (unregulated case)
INTRODUCING METHODS	Establish detailed guidelines in ac the city/district master plan guida 7 item 5-7-2-(5), and join up with th city/district management plans an plans
ADVANTAGES	Adaptation can be internalized wit of land, urban area, regions, etc a land use and urban planning syste Build ways to aid understanding w existing planning system; Use residential environment impro activities in regional planning.
DISADVANTAGES	The plan for climate change adapt be detailed; Clauses for climate change adapt become a low priority if not in line regional growth clauses; Lack of comprehensive discussion procedures and items required du development stage.

anning system)	MEASURE 2 (Introduce within the environmental conservation planning system)	
: space (city / nt plan) & regional	Internalizing adaptation: as part of the relevant spatial planning section of the city/county/ district environmental conservation plan;	
in: :ommunity)	Adaptive spatial planning: as part of the relevant spatial planning section of the city/county/ council environmental conservation plan (regional planning area and space units should be subdivided to adjust)	
ne city/county and	Planning guidelines to clearly state which sections of the environmental conservation plan should incorporate adaptive spatial planning for climate change, and the applicable clauses should be included within the guidance as a separate chapter.	
vith regional s (including :c)	Priority given over suitability with weather and climate issues	
of the methods city and be process	Unless it becomes a statutory requirement, it will be difficult to apply, and it would need to be reviewed at the same time as other items such as environmental impact assessment (regulated case)	
n accordance with idance Chapter th the lower level s and regional	Revise entire guidelines in the local environmental conservation plans	
within the sections tc according to ystems; ng within the nprovement	Can be discussed with other environmental conservation issues; Easy to establish plans through new main agents; Straightforward amendments to guidelines in line with other areas.	
daptation may not aptation can line with the sion due to many d during the plan	Difficult to directly reflect regional growth and other urban planning issues; Difficult to guarantee the execution of the established plan; Would need to agree and revise the entire guidelines (plan titles would need to be changed).	

11

Global Green Economy Dissemination through Cooperation Network **Agricultural Sectors in Laos and Cambodia**

Laos and Cambodia conform to the industrial structure of traditional agriculture-centered countries. The national strategies of these countries also center upon agricultural and rural development and environmental issues, including food security, poverty eradication, and climate change.


As an important means to achieve sustainable development and address the poverty issue in developing countries, the green economy is now presented as a new direction for all mankind. In particular, emphasis is placed on the fact that sustainable agriculture must take priority in order to respond to the growth in global population and the subsequent rise in the demand for food. With a focus on eradicating poverty, enhancing social equity and minimizing factors harmful to the environment in Laos and Cambodia, which are countries prioritized by Korea for cooperative efforts, this study aims to discuss strategies for expanding the green economy in agriculture as the main driver of the economy in these countries, and suggest policy proposals from the perspective of international cooperation.

Laos and Cambodia conform to the industrial structure of traditional agriculture-centered countries, with the agricultural sector accounting for more than 30 percent of the entire GDP and over 70 percent of the national workforce engaged in the agricultural industry. This indicates that the development of rural areas is necessary not only to exterminate absolute poverty, but also to enable continued economic development. The national strategies of these countries also center upon agricultural and rural development and environmental issues, including food security, poverty eradication, and climate change.

In Laos, slash-and-burn agriculture has been identified as a major cause of deforestation and poverty, due to its prevalence in mountainous areas that comprise about 80 percent of the entire land. The Lao government attempted to address this issue by banning the controversial agricultural technique in the 1980s, but this move has instead resulted in spreading the destructive slashand-burn practice, the main advantage of which is the short fallow period. This situation is driven not only by internal factors such as the growing population in the mountainous areas and lack of technology for paddy rice farming available to farmers, but also by external factors such as large-scale infrastructure development projects, expansion of industrial forestation projects, the Lao government's policy to relocate or merge villages, and the Land and Forest Allocation program. This resulted in the destruction of forests in total contrast to the original objective, as well as reduced household income caused by the decreasing productivity corresponding to the deteriorating quality of soil.

In addition, the cultivation of cash crops are rapidly expanding in the mountainous areas of Laos as a combined result of the abovementioned policy and the increasing demand for agricultural products in Vietnam and other neighboring countries, but concerns have been raised over income instability among the local residents and the food crisis possibly caused by unfavorable contracts and price volatility in the international markets.

Conditions in Cambodia are largely suitable for agriculture, with a favorable climate, abundant manpower and water resources, and the government is pursuing agricultural policy as a major strategy in fighting poverty. Under the policy direction, the area of agricultural production is expanded every year with the core objective of exporting rice and meeting demands from the agricultural industry, while a range of support measures is provided to encourage public and private investment in agriculture and to strengthen technical capabilities of farmers through research on agricultural technology and the agricultural extension service. In addition, expanded technical and financial support from aid-giving

STRENGTHS

svstem

Source: Vanthong Phengvichith 200

The agricultural sector accounts for more than 30 percent of the entire GDP

> Over 70 percent of the national workforce accounts in the agricultural industry

Mountainous areas comprise about 80 percent of the land in Laos

requested by farmers

TABLE 1. SWOT ANALYSIS OF AGRICULTURE IN MOUNTAINOUS AREAS OF LAOS

- · Sense of community and resident participation
- Growing cultivation of cash crops and increasing number of stockbreeding farms

WEAKNESSES

- · Lack of agricultural technologies for paddy-field farming
- Poor state and inefficient management of agriculture-related infrastructure (roads, irrigation facilities, machinery and tools)
- · Labor-intensive farming with low productivity

OPPORTUNITIES

- Growing importance of sustainable agricultural development within the international community through the Rio+20 Conference, etc
- Government policy to encourage commercial farming in mountainous areas, including microfinancing, land distribution with resident
- participation, and introduction of technologies
- Increased demand for agricultural and livestock products and abundant opportunities to exploit new markets, following economic growth and urbanization of neighboring countries including China and Vietnam

THREATS

- Land degradation and increasing forest destruction due to the shortened fallow period caused by the ban on slash-and-burn farming
- Unstable resident income due to the volatility of national prices on cash crops
- Threatened food security
- Environmental pollution caused by increasing use of agricultural chemicals

EULSAENG CHO I Research Fellow, Global Strategy Center

institutions is a favorable factor for the development of agriculture and rural areas in Cambodia.

Despite the continued expansion of irrigation facilities through government policy support, inadequate capacity for facility management has led to a low rate of rice production compared to the amount of water supplied, and subsequently the low collection rate of water usage fees for irrigation facilities creates further difficulties for facility management. The lack of infrastructure for milling and storage facilities is also an obstacle to ensuring price competitiveness for rice and enhancing agricultural household income. Risks to sustainable agricultural development include environmental contamination, such as water pollution caused by the increased use of agricultural pesticides and fertilizers during the dry season for higher crop yields and the intrusion of saltwater into groundwater reserves due to excessive abstraction of groundwater for irrigation and energy uses.

As the hydroponic agricultural system of Cambodia usually uses the sewage or wastewater flowing into wetlands in suburban areas, this enables the biological treatment of wastewater and cheap, largescale output by water plants. Hydroponic vegetables are consumed on a near-daily basis by the Cambodian people, contributing to the high market demand, and therefore are known as an excellent source of income compared to other income sources in rural and urban areas. The recent increase in reclaimed wetlands driven by expanding urbanization and industrialization is raising concerns over greater water pollution and the resulting health and hygiene damages that may be caused by hydroponic agricultural products. Sewage and factory wastewater is often discharged into wetlands or artificial ponds made for wastewater treatment without undergoing proper treatment, and water quality is deteriorating due to the use of agricultural pesticides and chemical fertilizers by farmers unaware of potential consequences, along with mining activities and subpar urban sewage management. In an effort to protect the environment of water resources, the Ministry of Environment of Cambodia selects regions that supply water for public use, monitoring and managing the quality of public water each month, while the Ministry of Water Resources and Meteorology collects and analyzes water samples on a monthly basis. However, the

TABLE 2. SWOT ANALYSIS OF IRRIGATION AGRICULTURE IN CAMBODIA

STRENGTHS

- Favorable climate and abundant water resources for multiple
- Annually increasing arable area to meet the demand from th industrv.
- Stable implementation of policy and rapid economic growth the stabilization of domestic politics following the 2013 gene

OPPORTUNITIES

- Strong government will to foster agriculture and the rice inde national strategies including the Rectangular Strategy.
- · High level of openness to external markets and a large volur received from the international community (including South
- Increasing opportunities for agricultural exports to neighbor

	WEAKNESSES
le cropping.	• Insufficient capability for postharvest handling and management, e.g. poor
he agricultural	infrastructure for pounding and storage facilities.
6 H	Insufficient capability to manage irrigation facilities.
n following	 Inefficient rice productivity compared to the supply of water.
eral elections.	
	THREATS
duota, through	• Low income lovel among residents in surel areas
dustry through	 Low income level among residents in rural areas. Decreased payment rate for water use fees.
me of ODA	 Increasing use of chemical fertilizers following the permission for private
Korea).	operators to import chemical fertilizers.
ring countries.	• Concerns over the depletion of groundwater and water pollution.

EULSAENG CHO I Research Fellow, Global Strategy Center

FIGURE 3. INLETS AND OUTLETS AND MAIN WATER SPINACH GROWING AREAS OF THE BOEUNG CHEUNG EK LAKE

Boeung Trabek, pumping station(inlet) Boeung River(Lower Cambodian Mekong) Green : main area for water spinach farming in the lake Villages growing water spinach

> JICA pumping station (lake inlet)

One outlet of BCE Lake to tributaries

TABLE 3. SWOT ANALYSIS OF HYDROPONIC AGRICULTURE IN SUBURBAN AREAS IN CAMBODIA

STRENGTHS

- Large-scale natural wetlands in Phnom Penh
- Low labor cost and simple technology compared to other methods
- Increased agricultural output and effect of self-purification based on the use of urban sewage and wastewater as a m fertilizers

OPPORTUNITIES

- Increasing demand and marketability of hydroponic agricu
- Direct and indirect increase in income among farmers and in wholesale and retail, due to possibility of year-round cul
- A priority recipient for credit assistance and grant-type aid with agriculture being the priority sector for cooperation

Source: Kuong K. et al. (2007)

	WEAKNESSES
cultivation n of water quality nain source of	 Lack of technology to commercialize hydroponic products Reduction of output and income due to floods or other natural disasters Insufficient national strategies and public awareness for the conservation of aquatic environment
ultural products I middle traders Itivation d from Korea,	 THREATS Increasing reclamation of wetlands following urban development Livelihood threatened by the decreasing area for hydroponic cultivation Forced eviction of the poor Worsening water pollution due to increased use of agricultural pesticides and shrinking area of wetlands Reduced economic value of hydroponic vegetables and rising concern over health and hygiene due to increasing water pollution

effectiveness of such endeavor remains limited, largely due to the lack of a national strategy, shortage of expert manpower, and the fiscal crunch.

The reclamation of lakes to expand the urban area has resulted in the forced eviction of low-income residents and decrease in the area of land used for hydroponic cultivation, thereby posing a threat to the livelihood of farmers and increasing the number of the urban poor. In response to the situation, some farmers have learned advanced hydroponic techniques from neighboring countries to establish facilities for artificial hydroponic agriculture and cultivate high-quality hydroponic crops. However, such cases are extremely rare, and most ordinary farmers do not possess the necessary level of technical knowhow and cannot even make such an attempt due to the financial burden. Against this backdrop, the main areas for international development cooperation to help sustainable development of agriculture and rural areas in Laos and Cambodia in consideration of the green economy are as follows.

For the slash-and-burn agriculture in the mountainous areas in Laos, the introduction of high added-value agricultural management suitable for the climate and soil of the mountainous areas is necessary in order to protect forestry resources and prevent soil deterioration caused by crop cultivation, and as a replacement for the slash-and-burn method, which is on the rise following the government ban. As part of the countermeasures, this study proposes an international cooperation project designed to distribute technology of breed improvement, in order to facilitate region-rotational and eco-friendly livestock industry in accordance with national strategies. Except for the plains around the Mekong River basin, most crops in Laos are cultivated during the wet season due to the insufficient irrigation facilities. Particularly in the mountainous areas occupied for slash-and-burn farming, irrigation facilities are inadequate for the small minority share of paddy rice farming. The restructuring of irrigation will facilitate not only rice farming, but also greater stability in the cultivation of many other crops, contributing to the improvement of diet and income among Lao residents. Under the current agricultural conditions in Laos, it is necessary to establish eco-friendly irrigation facilities with high field adaptability that may be managed by the tightly knit local communities of Laos, instead of facilities such as pumping stations and tube wells that require large installation costs as well as significant costs and efforts for maintenance.

A primary concern for irrigation agriculture in Cambodia is improving rice productivity in rainfed paddy fields during the wet season, and it will be more desirable to enhance management efficiency than to increase the irrigation ratio by undertaking medium- or large-scale projects for water resources development that will require investments and incur environmental impacts

to a significant degree. Secondly, productivity must be improved by enhancing technical efficiency from developing high-yielding seeds for example, and it is particularly imperative to develop varieties that deter the use of a large quantity of farm inputs such as chemical fertilizers and agricultural pesticides. Thirdly, instead of extending the rice-farming area to hilly areas where obtaining a supply of water resources is difficult, it is worth considering the reduction of excessive dependence on rice farming in such regions and instead discovering and distributing alternative crops for higher income generation and commercialization.

Due to the rapid urban development in Phnom Penh, and the resulting industrialization and the reclamation of natural wetlands, concerns have been constantly raised over the possibility of reduced areas for hydroponic cultivation, which is the main source of income for the poor strata in the suburban areas, and deteriorating water pollution, thus posing a threat to the livelihood of the poor and public health and hygiene. In response to these problems, it is necessary for the government to provide financial support for the early settlement and vitalization of eco-friendly artificial hydroponic agriculture, which will enable the large-scale production of clean and high-quality vegetables all year round regardless of harvest conditions, as well as clean cultivation environment to reduce unfavorable conditions for labor practices. In addition, farmers must be given appropriate support to enhance their capabilities in terms of technical skills. In order to prevent water pollution, one of the major environmental challenges caused by urbanization, it is urgent to establish basic environmental facilities for the treatment of sewage and wastewater, and disposal of waste, and to systemically restructure relevant policy and legislation.

The area of international cooperation proposed in this study is where Korea has a comparative advantage in terms of agricultural experience and technology, and the area coincides with the sectors included in the National Strategic Development Plan (NSDP) of Laos and Cambodia. Furthermore, it is advisable for the two countries, which are designated as priority countries for official development aid (ODA) provided by Korea, to pursue systemic development and cooperation projects based on a strengthened multilateral cooperative system requiring joint participation by the private sector, government and other aid-providing institutions.

Keywords : Sustainable development, green economy, slash-andburn agriculture, irrigation agriculture, hydroponic agriculture

Biographies

Dong Hyun KIM

Research Fellow, Division of Planning and Cooperation Korea Adaptation Center for Climate Change donghvunkim@kei.re.kr

Dr. Kim has been working in the field of urban planning and climate change adaptation research since 2012. The key research results include the community based adaptation, urban resilience, and collaborative planning process. His current research interests include social innovation process, appropriate technology, collaborative environment planning, and sustainable regional development.

Dong Hvun Kim, 2014, Civil Participation and Policy Solution for Urban Disaster Management. Journal of Korea Society of Hazard Mitigation 14(5) Dong Hyun Kim, Hye Jeong Seo, Byung Kook Lee, 2014, Method of Green Infrastructure Application for Sustainable Land Use of Non-urban Area: The Case Study of Eco-delta City. Journal of Korea Society Environment Engineering 36(6) Dong Hyun Kim, Hee-Sun Choi, 2013, The Planning Process and Simulation for Low Impact Development in Waterfront Area, Journal of the Environmental Policy 12(1)

Dong Hyun Kim, Ye Seul Choi, and Up Lim, 2012, An Analysis of Labor Mobility using Hierarchical Generalized Linear Model: Individual and Regional Factors. Journal of the KRSA 28(3)

Eulsaeng CHO

Research Fellow, Knowledge Network Team **Global Strategy Center** escho@kei.re.kr

Dr. Cho has been working in the field of water environment policy research with particular focus on water supply and wastewater management since 2009. She has conducted many research projects including real-time water quality management, Energy management for wastewater utilities. wastewater management for indirect discharging industry. Currently, she is also working on global issues related to sustainable development especially for developing countries, such as global green economy dissemination through cooperation network and appropriate technology for safe drinking water supply in developing countries.

Transfer and diffusion of appropriate technology for securing safe drinking water in developing countries(II)-Membrane distillation using solar energy, 2013.

2012 Modularization of Korea's development experience: Small-scale waterworks and sewerage systems, 2013d

Profiles of KEI Researchers

Executives

Name	Position	Main Research Area
Park, Kwang Kook	President	
Lee, Byung Kook	Vice President	Water Environment Management, Water Supply and Sewage Engineering, Life Cycle Assessment
Lee, Young Soo	Head, Office of Planning and Coordination	Air Quality Management, Environmental Impact Assessment, Health Impact Assessment
Lee, Changhoon	Director General, Environmental Policy Research Group	Environmental Economics
Lee, Young-Joon	Director General, Environmental Assessment Group	Geology, Environmental Impact Assessment
Song, Young-IL	Director General, Korea Adaptation Center for Climate Change	Environmental Assessment, Water Quality Management
Ro, Tae Ho	Director General, Global Strategy Center	Ecology, Environmental Impact Assessment, International Cooperation
Lee, Hak Gu	Head, SMART Administration Office	Management of Administration

Environmental Policy Research Group

Director General: Lee, Changhoon (Senior Research Fellow)

DIVISION OF ENVIRONMENTAL STRATEGY

Name	Position	Main Research Area
Chang, Ki-Bok	Chief Research Fellow	Chief Research Fellow
Kang, Sung Won	Senior Research Fellow	Econometrics, Fiscal Policy, CGE Model
Kim, Jong Ho	Senior Research Fellow	Environmental Economics
Ahn, SoEun	Senior Research Fellow	Natural Resource Economics, Environmental Valuation
Chung, Woo Hyun	Research Fellow	Environmental Policy, Policy Analysis
Kwak, So Yoon	Research Fellow	Economics, Value Estimation
Lee, Misuk	Research Fellow	Techno-economics, Consumer Demand Analysis, Economic Analysis
Cho, Ilhyun	Researcher	Environmental Economics

DIVISION OF CLIMATE AND AIR QUALITY

Name	Position	Main Research Area
Gong, Sung Yong	Director	Air Quality Management, Chemicals Management
Kang, Kwang Kyu	Chief Research Fellow	Air Quality Management, Ecology Policy
Kim, Yong-Gun	Chief Research Fellow	Economics/Quantitative Business Analysis, Greenhouse Gas Reduction Policy, Carbon Market/ International Negotiation
Lee, Sang-Youp	Senior Research Fellow	Greenhouse Gas Reduction Policy, Energy Policy
Lee, Sang Yun	Research Fellow	Environmental Sociology, Environmental Planning and Policy
Lee, Seungmin	Research Fellow	Air Quality Management, Trans-boundary Air Polluton
Hahn, Jinseok	Research Fellow	Transportation Environment
Kim, Lee Jin	Research Specialist	Environmental Policy
Choi, Young Woong	Researcher	Statistics

DIVISION OF WATER ENVIRONMENT

Name	Position	Main Research Area
Ahn, Jong Ho	Director	Water Quality Management, Water Supply & Sanitations
Moon, Hyun Joo	Chief Research Fellow	Environmental Economics, Water Industry
Kim, Ik-Jae	Senior Research Fellow	Nonpoint Source Pollution Management, Riparian Ecosystem Managemant
Kang, Hyeongsik	Research Fellow	Hydraulics, Eco-Hydraulic Model for River
Kim, Yeonjoo	Research Fellow	Hydrology, Water Resource Management
Kim, Hojeong	Research Fellow	Water Environment Management, Soil & Sediment Remediation
Ahn, Jong Ho	Research Fellow	Water Quality Management, Water Supply & Sanitations
Han, Hae Jin	Research Fellow	Watershed Management, Land Use Modeling, Climate Change Adaptation
Koo, Yoonmo	Research Fellow	Technology Policy
Han, Dae Ho	Research Specialist	Water Quality Management, Environmental Quality Standard, Industrial Waste Water Management
Yang, II Joo	Research Specialist	Environmental Engineering, Water Quality Management

DIVISION OF NATURAL RESOURCES CONSERVATION

Name	Position	Main Research Area
Lee, Hyun-Woo	Director	Biodiversity Planning, Environmental Assessment
Park, Yong-Ha	Chief Research Fellow	Soil Microbial Ecology, Soil Pollution Management, Biodiversity
Lee, Soo Jae	Chief Research Fellow	Geology, Climate Change Adaptation Policy, Environmental Impact Assessment

Hwang, Sang IL	Senior Research Fellow	Soil and Groundwater Pollution Management, Water Quality Management, Environmental Impact Assessment
Hyun, Yunjung	Research Fellow	Hydrogeology, Groundwater Management, Subsurface Environment Management, Ecohydrology
Kim, Yun Sung	Research Fellow	Soil and Groundwater Risk Assessment, Contaminant Transport Modeling
Kim, Choong-Ki	Research Fellow	Estuarine Hydrodynamics, Numerical Ocean Modeling, Marine Ecosystem Services, Marine Renewable Energy
Hong, Hyun Jung	Research Specialist	GIS, Remote Sensing

DIVISION OF RESOURCE CIRCULATION

Name	Position	
Shin, Sang-Cheol	Director	
Lee, Hi Sun	Chief Research Fellow	
Han, Sang Un	Senior Research Fellow	
Jo, Ji Hye	Research Fellow	
Park, Dongha	Researcher	

DIVISION OF ENVIRONMENTAL HEALTH

Name	Position	Main Research Area
Shin, Yong Seung	Director	Environmental Engineering, Environmental Health, Risk Assessment
Park, Jeong Gue	Chief Research Fellow	Environmental Toxicology, Risk Assessment, Environmental Health
Bae, Hyun Joo	Research Fellow	Environmental Health, Environmental Epidemiology
Suh, Yang-Won	Research Fellow	Environmental health, Risk Assessment, Risk Communication
Gan Sun Yeong	Researcher	Environmentology

Environmental Assessment Group

Director General: Lee, Young-Joon (Chief Research Fellow)

DIVISION OF ENVIRONMENTAL ASSESSMENT RESEARCH

Water Treatment, Environmental Impact Assessment
Ecology and Plant Pathology
Policy Science, Environmental Impact Assessment
Environmental and Ecological Planning, Spatial Environment Planning
Plant Systematics, Biological Resource Management
Water and Environment Management
Plant Taxonomy, Ecological and Environmental Policy
-

DIVISION OF ENVIRONMENTAL ASSESSMENT I

Name	Position	
Chun, Dong Jun	Director	
Choi, Joon Gyu	Chief Research Fellow	-
Maeng, Jun Ho	Chief Research Fellow	
Moon, NanKyoung	Senior Research Fellow	
Sagong, Hee	Senior Research Fellow	
Sun, Hyosung	Senior Research Fellow	
Shin, Kyung-Hee	Senior Research Fellow	
Lee, Jin Hee	Research Fellow	
Joo, Yong Joon	Research Specialist	

DIVISION OF ENVIRONMENTAL ASSESSMENT II

Name	Position	Main Research Area
Park, Young Min	Director	Environmental Engineering, Environmental Noise Management, Environmental Impact Assessment
Kim, Ji Young	Chief Research Fellow	Geology, Environmental Impact Assessment
Joo, Hyun Soo	Chief Research Fellow	Air Quality Management, Waste Management, Environmental Impact Assessment
Bang, Sang-Weon	Senior Research Fellow	Ecological Risk/Impact Assessment
Lee, Sangbum	Senior Research Fellow	Landscape Ecology, RS/GIS, Environmental Impact Assessment
Kim, Tae yun	Research Fellow	Water Quality Modeling, Hydro-dynamic Modeling, Environmental Impact Assessment
Yi, Young Jae	Research Fellow	Urban Planning, Environmental Impact Assessment
Cho, Hanna	Research Specialist	Environmental Engineering

Main	Researc	h Area
------	---------	--------

Applied Microeconomics, Consumer Theory, Natural Resources
Waste Resource Recycling, Renewable Energy
Environmental Law
Environmental Engineering, Bioenergy
Urban Planning

21

Main Research Area
Evolutionary Ecology, Environmental Impact Assessment
Environmental Engineering, Environmental Impact Assessment
Marine Environment, Environmental Impact Assessment
Air Quality Management, Air Quality Modeling, Environmental Impact Assessment
Geology, Environmental Impact Assessment
Noise Assessment, Environmental Impact Assessment
Soil Remediation Technology, Environmental Impact Assessment
Water Resources Planning and Management, Environmental Impact Assessment
Urban Planning, Environmental Planning, Environmental Impact Assessment

Korea Adaptation Center for Climate Change

Director General : Song, Young-IL (Chief Research Fellow)

DIVISION OF PLANNING AND COOPERATON

Name	Position	Main Research Area
Park, Chang Sug	Director	Environmental Planning & Design
Lee, Jeongho	Senior Research Fellow	Environmental Geochemistry, Groundwater Modeling
Kim, Dong Hyun	Research Fellow	Urban and Regional Planning, Social Innovation, Appropriate Technology
Jung, Huicheul	Research Fellow	Climate Change Impact and Risk Assessment, Integrated Modeling, GIS, Remote Sensing
Ha, Jongsik	Research Fellow	Environmental Health Statistics and Epidemiology
Shin, Ji Young	Research Specialist	Environmental Planning, Climate Change Adaptation
Lee, Moung Jin	Research Specialist	Earth Science, Remote Sensing, GIS
Lim, Young Shin	Research Specialist	Urban and Environmental Planning, Climate Change Adaptation, Environmental Assessment
	nesearch specialist	orban and Environmental Franking, Climate Change Adaptation, Environmental Assessment

DIVISION OF ADAPTATION RESEARCH

Name	Position	Main Research Area
Song, Young-IL	Director	Environmental Assessment, Water Quality Management
Han, Wha-Jin	Chief Research Fellow	Committee on Strategic Directions Air Quality Management, Climate Change
Cho, Kwangwoo	Chief Research Fellow	Physical Oceanography, Sea Level Rise and Climate Change Impact Assessment
Myeong, Soojeong	Senior Research Fellow	Climate Change Adaptation, Remote Sensing Application, Environmental Education
Chae, Yeora	Senior Research Fellow	Integrated Assessment of Climate Change and Air Pollution
Lee, Seungjun	Research Fellow	Environmental Engineering, Systems Ecology
Kim, Oh Seok	Research Fellow	Geography
Ryu, Jae Na	Research Fellow	Urban Drainage System Operation and Management, Inundation, Sewer Network Modeling
Jung, Seon Hee	Research Specialist	Water Resources Management

Global Strategy Center

Director General : Ro, Tae Ho (Senior Research Fellow)

DIVISION OF GLOBAL ENVIRONMENT

Name	Position	Main Research Area
Yoo, Heon Seok	Director	Urban Planning and Design, Environmental Planning, Environmental Impact Assessment
Chang, Hoon	Senior Research Fellow	Urban Planning, Sustainable Development, Space Planning
Chu, Jang Min	Senior Research Fellow	International Environment Policy, Chinese Environmental Policy
Kang, Taek Goo	Research Fellow	International Relations, Chinese Environmental Policy
Kim, Ho Seok	Research Fellow	Energy Economics, Environmental Economics
Shim, Changsub	Research Fellow	Climate Change Monitoring, Air Quality Assessment and Modeling
Jung, Jae Hyun	Research Specialist	Environmental Engineering

KNOWLEDGE NETWORK TEAM

Name	Position	Main Research Area
Cho, Eulsaeng	Team Leader	Environmental Engineering, Sanitation, Water Quality Management
Kang, Sang In	Chief Research Fellow	International Economy, Trade and Environment, Sustainable Development
Lee, Jeongseok	Research Fellow	Climate Finance, Climate Change Negotiations, Governance, Conflict Management, Knowledge Management
Park, Jun Hyun	Researcher	Public Policy, Development Policy

Korea Environmental Information Center

Director General : Jeon, Seong Woo (Chief Research Fellow)

DIVISION OF ENVIONMENTAL INFORMATION RESEARCH

Name	Position	Main Research Area
Jeon, Seong Woo	Director	Environmental Planning, Natural Environmental Policy, Environmental Intelligence Management System
Yoon, Jeong Ho	Senior Research Fellow	Forest Resources Management, GIS, Remote Sensing
Kim, Taehyun	Research Fellow	Urban Planning & Design, Urban Disaster Prevention, Carbon Footprint

Key Research 2014

ТНЕМЕ	RESEARCH PRO
BUSINESS-FRIENDLY ENVIRONMENTAL POLICIES	1. Big Data Ar
AND STRATEGIES	2. Study on W
	of Recyclin
	3. The Develo
	4. Review of IC
	5. A Study of
	6. Managemer
PROACTIVE AND FUTURE-ORIENTED	1. Asset Manag
ENVIRONMENTAL MANAGEMENT FRAMEWORK	2. A Study on
	3. Evaluation
	4. Assessmer
	5. The Roles a
	6. Developme
	7. A Study on
LIFE-CYCLE ENVIRONMENTAL ASSESSMENT FOR	1. Effective A
SUSTAINABLE DEVELOPMENT	2. A Study on
	3. LID Implen
INTERNATIONAL COOPERATION FOR CLIMATE	1. Spatial Plan
CHANGE ADAPTATION	2. A Study on
	3. Analysis of
GLOBAL KNOWLEDGE-SHARING ON	1. Regional Co
ENVIRONMENTAL ISSUES	2. Study on Ke
	3 The Impact

ROJECT

Analysis on Demand for Environmental Policy

Win-win Methods Between Large and Small Enterprises to Reinforce Global Competitiveness

ng Industry of Waste Metal Resources

opment of Criteria and Indicators for Environmental Welfare.

ICT Solutions for Green Lifestyles

Organizing Legal System for Resource-circulating Society

nt and Sustainability of Hyporheic Zones

gement of Water Infrastructure to Improve the Water Environment Service of Urban River

Establishment of Chemical Action Plan for Enhanced Utilization of Risk Assessment in Policy Making (II)

of Air Emission Reduction And Technology Development Caused by ELV Reinforcement

nt of Chronic Health Effects of Air Pollution from Cohort Study

and Responsibilities of Land Owner or Occupiers to Effectively Manage Nonpoint Source Pollution

ent of a policy and management framework for freshwater harmful algal blooms

Establishment and Management of Sustainable Financing System for Water and Sanitation (II)

pplication of Strategic Environmental Assessment (II): Practical Guidelines for the Assessment of Policy Plans

Management Plan for Conflict Mitigation of Apartment Noise

nentation Scheme for Environmental Impact Assessment

anning Method and Applications for Climate Change Adaptation (II)

Establishment of Long-term Heat wave Plan Addressing Climate Change

of Socioeconomic Impacts of Climate Change based on Indicator Approach

ooperation on Environmental Disaster Countermeasures in Northeast Asia

Korea's ODA strategy for Human Rights to Water in SDGs

3. The Impact of the National Plan for Future Electric Supply on Ambient Air Quality of Korea

Key Research 2015

TITLES	LEAD RESEARCHER
1. Inconvenience Costs and Policy Implications of Environmentally Friendly Actions	Lee, Misuk
2. A Phased Response Plan for Inflow of Air Pollution Sources Across the Borders	Lee, Sang Yun
3. Policy Development for Changes in Water Demands such as Ecological Flow and Water Features	Kim, Hojeong
4. Policy Planning for Local Environmental Health Infrastructure – Korean CARE Program	Bae, Hyun Joo / Shin, Yong Seung
5. Plans to Expand Ecological Conservation Areas	Lee, Soo Jae
6. Analysis of Waste and Debris Cycle to Enhance Resource Circulation of End-of-Life Vehicles	Lee, Hi Sun
7. Alternative Assessment and Set Up during Environmental Assessment	Lee, Sangbum
8. Local Resource Management in Light of Climate Change Adaptation	Lee, Jeongho
9. Response to Environmental Impacts and Joint Environmental and Economical Cooperation Strategy in North East Asia FTA	Chu, Jang Min
10. Gathering and Using Environmental Data of North Korea (I) - Building up Land Covering Map	Jeon, Seong Woo
11. Improvements to Management System for Below Ground Environment (I)	Hwang, Sang II
12. Development and Application of Indicators of Base Run-Off for the Management of Groundwater Reliant Ecological System	Kang, Hyeongsik / Hyun, Yunjung
13. Development of Combined Land Use Model for Climate Change Adaptation Strategy	Kim, Oh Seok
14. Spatial Planning Assessment System and Model Development for Building Resilience in Urban Climate	Kim, Dong Hyun
15. Alternative System in Preparation of Failure of Environmental Infrastructure due to Climate Change	Ryu, Jae Na
16. Developing a System of Impact Assessment for Chemical Accidents	Park, Jeong Gue / Suh, Yang-Won
17. Predicting Ecological Network Changes Using Random Week (I)	Kim, Ji Young
18. Noise Assessment and Management Plan for Wind Farms	Park, Young Min
19. Bridging Livable City Development over Local Climate Smart Development under UN SDGs	Chang, Hoon
20. Improving Acceptability of Unwelcome Public Facilities through Government 3.0 Paradigm Selecting Locations for High Level Radioactive Waste Treatment Plants	Kim, Tae Hyun