

Global NIP Update Webinar “Activity Options for Action Plans for Stockholm Convention NIPs: ¹
Unintentional POPs and POP-PFASs”, 20. January 2026, 14:00 -16:30 CET, UTC+1

Options for Action Plan Activities to Control, Manage and Phase out POP-PFASs and Synergy with GFC's Issue of Concern for all PFASs

Dr. Roland Weber

POPs Environmental Consulting,
73527 Schwäbisch Gmünd, Germany
roland.weber10@web.de
<https://www.researchgate.net/profile/Roland-Weber-2>

GREEN GROWTH
Knowledge Partnership

UN environment
programme

gef

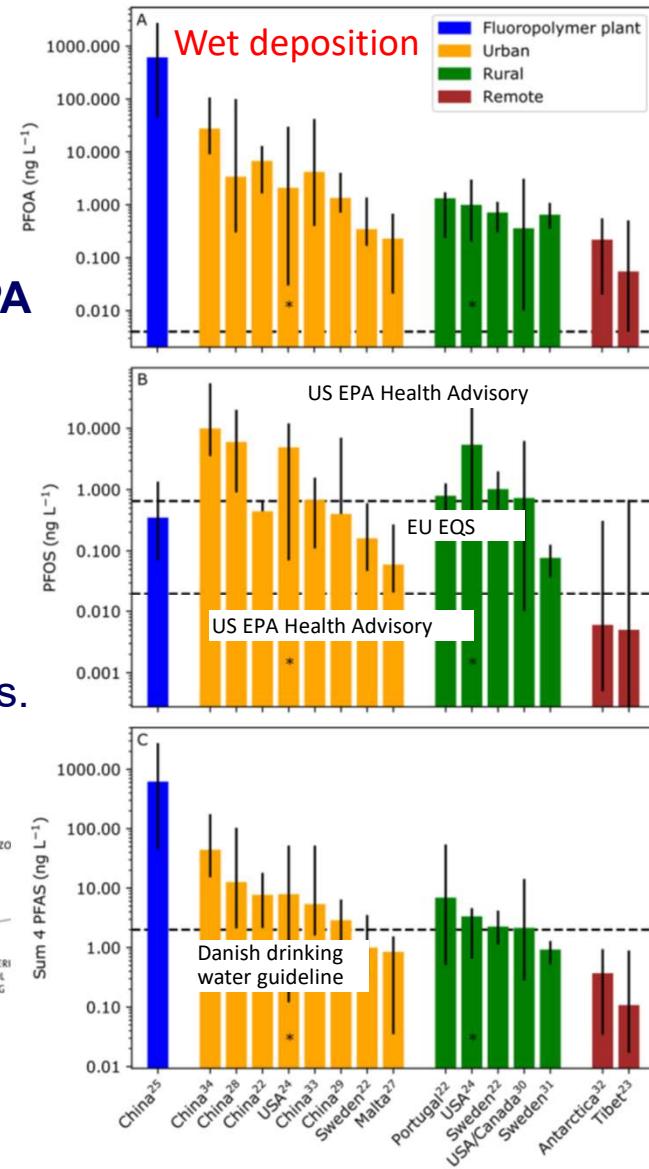
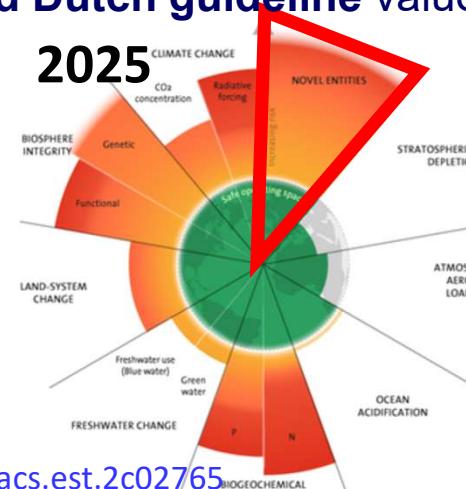
25 POPs were newly listed in the Stockholm Convention 2009-2025

Chemical	Pesticides	Industrial chemicals	Unintentional production	Annex
Chlordecone, Endosulfan, Dicofol	+			A
α-/β-HCH, Lindane, Methoxychlor	+			A
PCP its salts & ester; Chlorpyrifos	+	+		A
Commercial PentaBDE			+	A
Commercial OctaBDE (hexa/hepta)			+	A
DecaBDE			+	A
Hexabromobiphenyl (HBB)			+	A
Hexabromocyclododecane (HBCD)			+	A
PFOS, its salts and PFOSF	+		+	A
PFOA and related compounds			+	A
PFHxS and related compounds			+	A
Long-chain PFCAs			+	B
SCCPs (C10-C13; ≥48%)			+	A
MCCPs (C14-C17; ≥45%)			+	A
Dechlorane Plus			+	A
UV-328			+	A
Hexachlorobutadiene (HCBD)		+	+	A/C
Pentachlorobenzene (PeCBz)		+	+	A/C
Polychlorinated Naphthalene (PCN)		+	+	A/C

Meanwhile **four groups of PFAS** are listed in the Stockholm Convention

- PFOS, its salt and PFOSF
- PFOA and related compounds
- PFHxS and related compounds

Long-chain perfluorocarboxylic acids (C₉-C₂₁ PFCAs) were **listed at COP12 in 05/2025**.



Therefore PFASs will be an even more important working area for the implementation of the Convention.

PFAS pollution crossed Planetary Boundaries

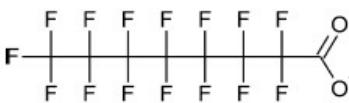
For four PFASs (PFOS, PFOA, PFHxS, PFNA), it has been concluded that the global spread of these PFASs in the atmosphere has led to **planetary boundary exceedance for PFAS pollution because:**

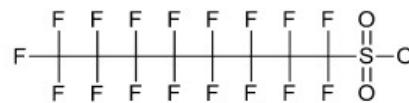
- 1) **Levels of PFOA and PFOS in rainwater often greatly exceed US EPA Lifetime Drinking Water Health Advisory levels (0.004 ng/L PFOA) and the $\Sigma 4$ PFAS in rainwater is often above Danish drinking water limit values also based on $\Sigma 4$ PFAS (2 ng/L);**
- 2) **Levels of PFOS in rainwater are often above Environmental Quality Standard for European Union Surface Water (0.65 ng/L PFOS);**
- 3) Atmospheric deposition also leads to **global soils** being **ubiquitously contaminated** and to be often **above proposed Dutch guideline values.**

PFOS has been **substituted** the last 20 years and **PFHxS** production stopped in 2022. Also **PFOA** and related compounds have largely been substituted in different regions in many uses. **But due to their very high persistence, most are still present in the environment and in reservoirs like landfills.**

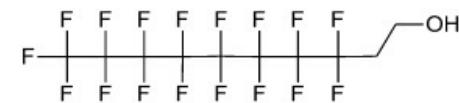
Other PFAS have often substituted PFOS and PFOA

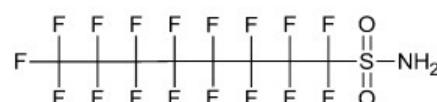
Industry moved to short-chain PFAS & PFAS ethers

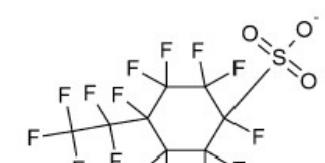
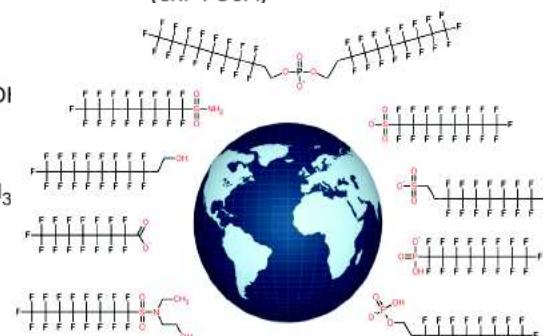

Today more than 10,000 PFASs are on the market

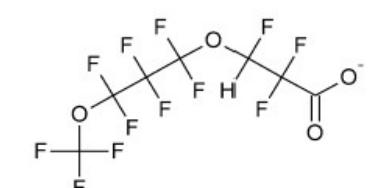

Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing <https://doi.org/10.1021/es2011622> ENVIRONMENTAL

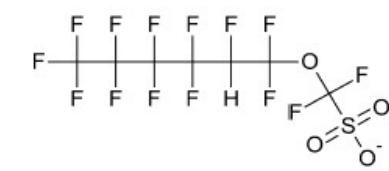
Emma J. Schymanski*, Jian Zhang, Paul A. Thiessen, Parvuel Chirsir, Todor Kondic, and Evan E. Bolton


<https://echo.epa.gov/tools/data-downloads/national-pfas-datasets> and more than 7 million PFAS are in PubChem according to OECD definition


Perfluorocarboxylic acids
(ex. PFOA)



Perfluorosulfonic acids
(ex. PFOS)


Fluorotelomer alcohol
(ex. 8:2 FTOH)


Perfluorosulfonamide (ex. FOSA)

Perfluorinated cyclo sulfonates (ex. PFECHS)

Polyfluorinated ether carboxylates (ex. 4,8-dioxa-3H-perfluorononanoate)

Polyfluorinated ether sulfonates

Polyfluorinated ether sulfonates

Polyfluorinated ether sulfonates

Integrated approach of POPs management: Stockholm Convention and synergies with the Global Framework on Chemicals (GFC/SAICM)

There are **close links between POPs and GFC** (former SAICM) “issues of concern”:

- Perfluorinated and polyfluorinated (as precursors) alkylated substances (PFAS) and the transition to safer alternatives.
- Chemicals in products
- Highly Hazardous Pesticides (HHPs) (see GGKP Webinar on action plans HHPs including **PFAS pesticides** <https://www.youtube.com/watch?v=Ar6TYGXRTVg&t=3140s>)
- Hazardous substance within the life cycle of electrical and electronic products.
- Endocrine-disrupting chemicals
- Environmentally persistent pharmaceutical pollutants (PFOI/PFOB)
- Lead in paints
- Nanotechnology and manufactured nanomaterials

Here the specific POPs issue can/should be addressed within the larger frame of managing an entire group of substances (all PFASs) with a science-based approach.

<http://www.saicm.org/Implementation/EmergingPolicyIssues/tabid/5524/language/en-US/Default.aspx>

Global Framework
on Chemicals

Synergies of addressing PFOS, PFOA, PFHxS and other PFASs

The Global Framework on Chemicals (GFC) considers all PFASs as an “Issue of Concern”.

- Reason: **also concern on short-chain PFAS due to persistence, high mobility, accumulation in plants/vegetables/fruits and difficulty to eliminated short-chain PFAS in drinking water.**
 - All short-chain PFASs are highly persistent or have highly persistent degradation products which are water soluble and are a risk to water and plants/vegetables/fruits.
 - Their presence in environment is irreversible (Eschauzier 2012 ES&T 46, 1708-15)
 - Insufficient data on structures, toxicity, volumes, use (e.g. Madrid Statement Blum et al. (2014) EHP 123, A107; Brunn et al. (2023) ESEU, 35, 1-50).
- Considering the need for **synergies between the Stockholm Convention and the Global Framework for Chemicals (GFC), the action plan for POP-PFASs could also address all PFASs as appropriate** (best based on the OECD definition of PFAS).

Global Framework
on Chemicals

OECD Definition: “PFASs are defined as fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom (without any H/Cl/Br/I atom attached to it). <https://doi.org/10.1021/acs.est.1c06896>

1. Regulatory framework for PFOS, PFOA & PFHxS (Stockholm) and other PFASs (SAICM/GFC Synergy)

7

Objective: Established policy & regulatory frame for the use, management and substitution of POP-PFASs and possibly other PFASs (GFC synergy) along the entire life cycle.

Recommended activity options:

- Assessment of established regulatory frames for controlling PFOS, PFOA, PFHxS, LC-PFCAs and related compounds and other PFASs (e.g., EU, or Australia).
- Amend existing laws, or develop new laws related to the restriction, control and management of PFOS, PFOA, PFHxS, LC-PFCAs and related compounds and possibly regulate all PFAS.
- Consider in the regulatory frame the exemptions needed for PFOS, PFOA or LC-PFCAA.
- Improvement of the traceability of chemicals and chemicals in products and custom control (GHS; GFC synergy). Option to require labelling of PFAS in products.
- Establish extended producer responsibility (EPR) and polluter pays principle (PPP) for PFOS, PFOA, PFHxS, LC-PFCA & related compounds and also for other PFAS as a group (GFC synergy)

Global Framework
on Chemicals

The Madrid Statement on PFASs for science based policy making

The Madrid Science Statement on PFASs (2015):

- Documents the scientific consensus regarding the persistence and potential for harm of PFASs and lays out a roadmap to gather needed information and prevent further harm.
- Recommendations to policy makers, industry, science...
- Regulate and manage PFAS as a group.

Madrid Statement signed by >200 scientist and coordinated by Green Science Policy Institute
<https://greensciencepolicy.org/our-work/science-policy/madrid-statement/>

- Public dialogue between industry (Fluorocouncil) and authors of the Madrid Statement in EHP.

<http://ehp.niehs.nih.gov/1509910/>
<http://ehp.niehs.nih.gov/1510207/>

Please note: Currently the DOIs of EHP articles do not function since Environmental Health Perspective was closed due to budget cuts of the Trump administration and formally transferred to ACS at the close of 2025.

2015: Environmental Health Perspectives
 Perspectives | Brief Communication

The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

<http://dx.doi.org/10.1289/ehp.1509934>

Arlene Blum,^{1,2} Simona A. Balan,² Martin Scheringer,^{3,4} Xenia Trier,⁵ Greta Goldenman,⁶ Ian T. Cousins,⁷ Miriam Diamond,⁸ Tony Fletcher,⁹ Christopher Higgins,¹⁰ Avery E. Lindeman,² Graham Peaslee,¹¹ Pim de Voogt,¹² Zhanyun Wang,⁴ and Roland Weber¹³

pubs.acs.org/journal/estlclu

This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Science: Regulate PFAS as a group

Environ. Sci. Technol. Lett. 2020, 7, 532–543

Global Perspective

<https://doi.org/10.1021/acs.estlett.0c00255>

Scientific Basis for Managing PFAS as a Chemical Class

Carol F. Kwiatkowski,* David Q. Andrews, Linda S. Birnbaum, Thomas A. Bruton, Jamie C. DeWitt, Detlef R. U. Knappe, Maricel V. Maffini, Mark F. Miller, Katherine E. Pelch, Anna Reade, Anna Soehl, Xenia Trier, Marta Venier, Charlotte C. Wagner, Zhanyun Wang, and Arlene Blum

Regulate PFAS as a group and allow only essential use

Madrid Statement: Governments/policy makers:

- Enact legislation to require **only essential uses** of PFASs and **enforce labelling to indicate uses.**
- The EU Commission in its chemicals strategy (2020) for sustainability towards a toxic-free environment suggests to **address PFAS as a group. With the following action: phasing out the use of PFAS in the EU, unless their use is essential.**

https://ec.europa.eu/environment/strategy/chemicals-strategy_en#ecl-inpage-238

PFAS: https://ec.europa.eu/environment/chemicals/pfas/index_en.htm

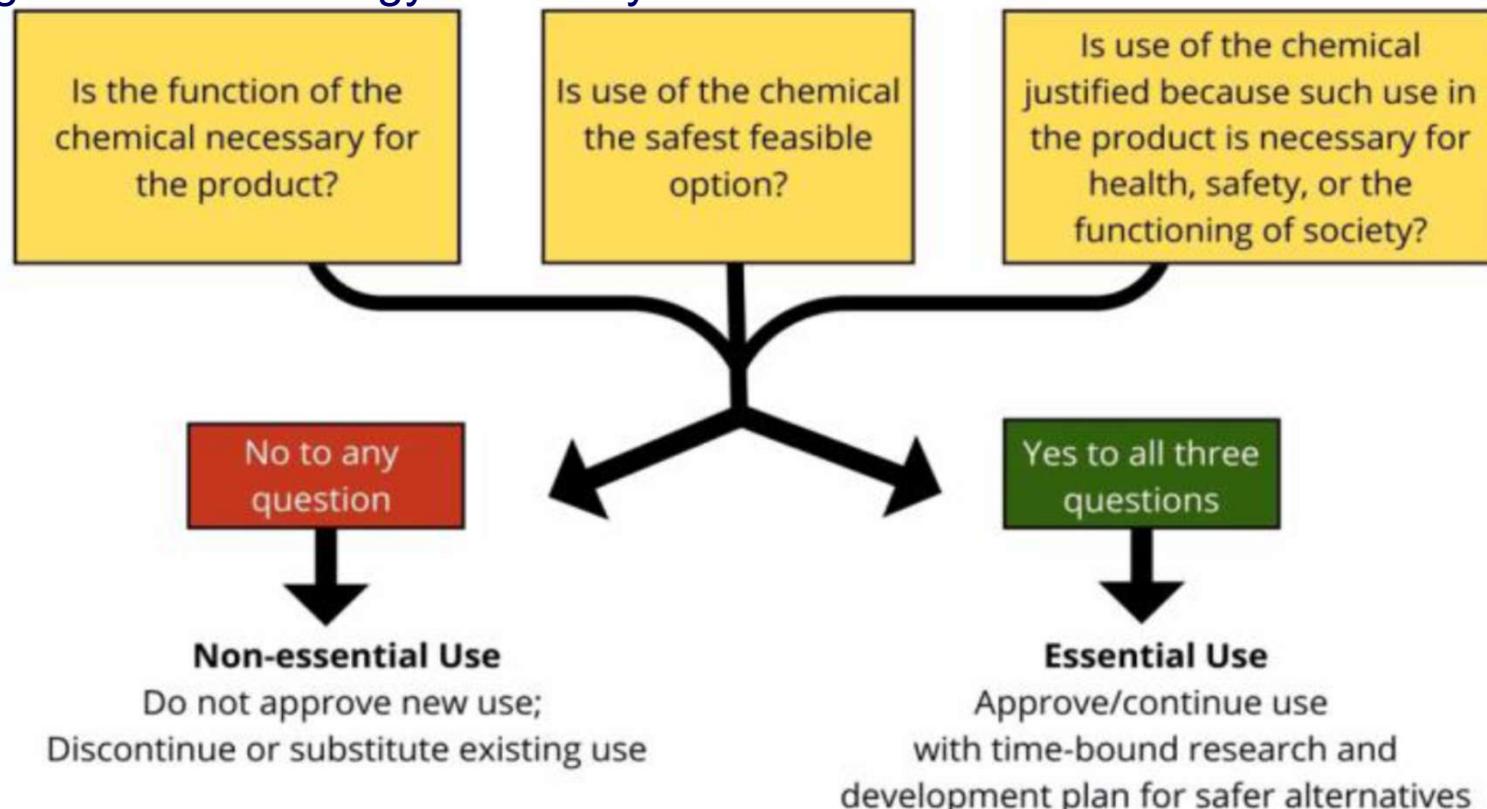
Brussels, 14.10.2020
COM(2020) 667 final

COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS

Chemicals Strategy for Sustainability
Towards a Toxic-Free Environment

- February 2023: ECHA published details of a **proposed restriction of around 10,000 PFASs!** Available on ECHA's website <https://echa.europa.eu/-/echa-publishes-pfas-restriction-proposal>
- **Received 5600 comments.** ECHA updated the restriction proposal based on the comments 08/2025: <https://echa.europa.eu/de/-/echa-publishes-updated-pfas-restriction-proposal> **Ongoing assessment.**

Perspectives | Brief Communication


<http://ehp.niehs.nih.gov/1509934/>

The Madrid Statement on Poly- and Perfluoroalkyl Substances (PFASs)

<http://dx.doi.org/10.1289/ehp.1509934>

Do we need it at all? - Essential use concept

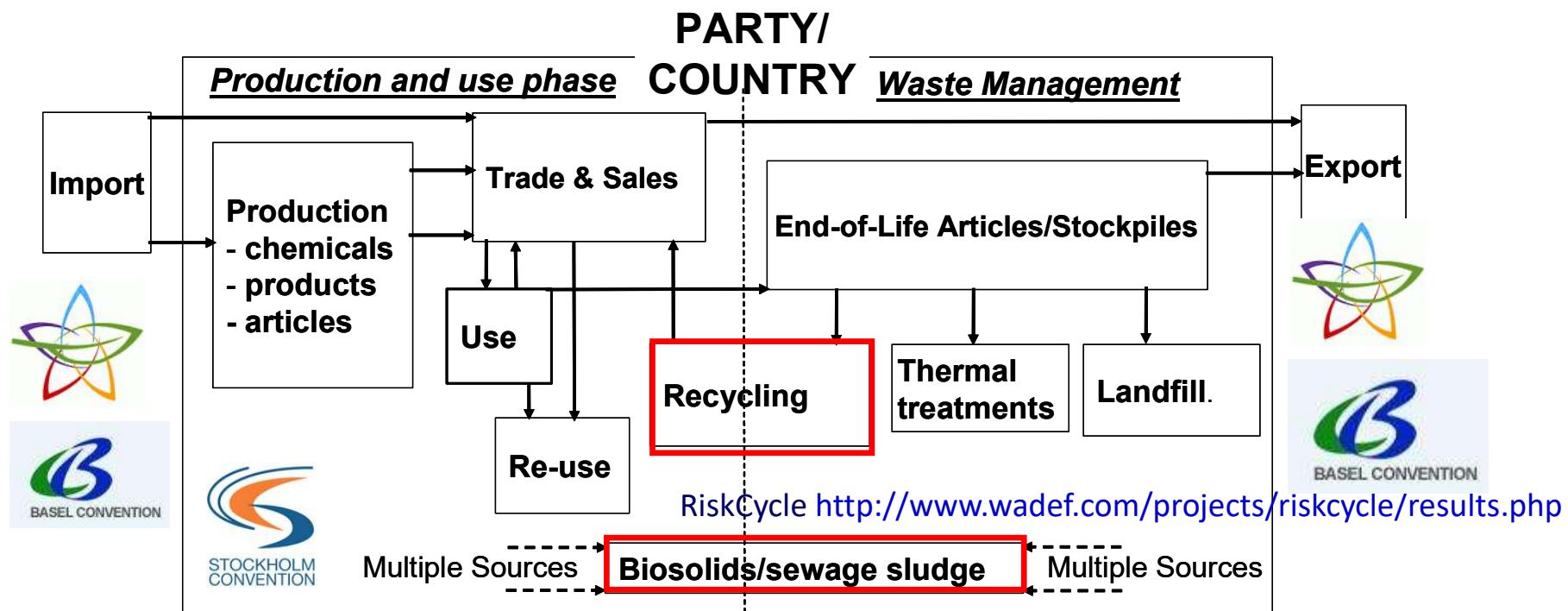
- Many chemicals and rather products are not needed at all if they are not essential.
- Suggestion of a strategy to identify non-essential uses:

2. Refining of the inventory for POP-PFAS and developing an inventory for other PFASs and their uses

Objective: Updated and refined inventory of POP-PFAS and other PFAS uses, PFAS-containing products, and PFAS-waste including databases for information management.

Recommended activity options:

- Developing or refining inventories of POP-PFASs and other PFASs in firefighting foams.
- Developing or refining inventories of POP-PFAS and other PFASs in consumer products (e.g. treated synthetic carpets, textiles, furniture, paper, transport sector).
- Developing or refining inventories of POP-PFASs and other PFASs in industrial uses.
- Refining the inventory of stocks & waste of POP-PFASs and other PFAS (including landfills).
- Refining inventory of historic use and release of POP-PFASs and other PFAS (see contaminated site action plan).
- Material and substance flow analysis of POP-PFASs and other PFASs.



Global Framework
on Chemicals

Action plan consideration: PFASs need to be controlled **along the life cycle**

- Regulatory frame and action plans should address POP-PFASs (option all PFASs) **in the life cycle**.
- Control of recycling becomes increasingly relevant as countries move towards a more circular economy and POPs (including PFASs) are frequently in products. **PFASs also end-up in sewage sludge which is applied in to agricultural soil in many countries, posing a pollution risk!**

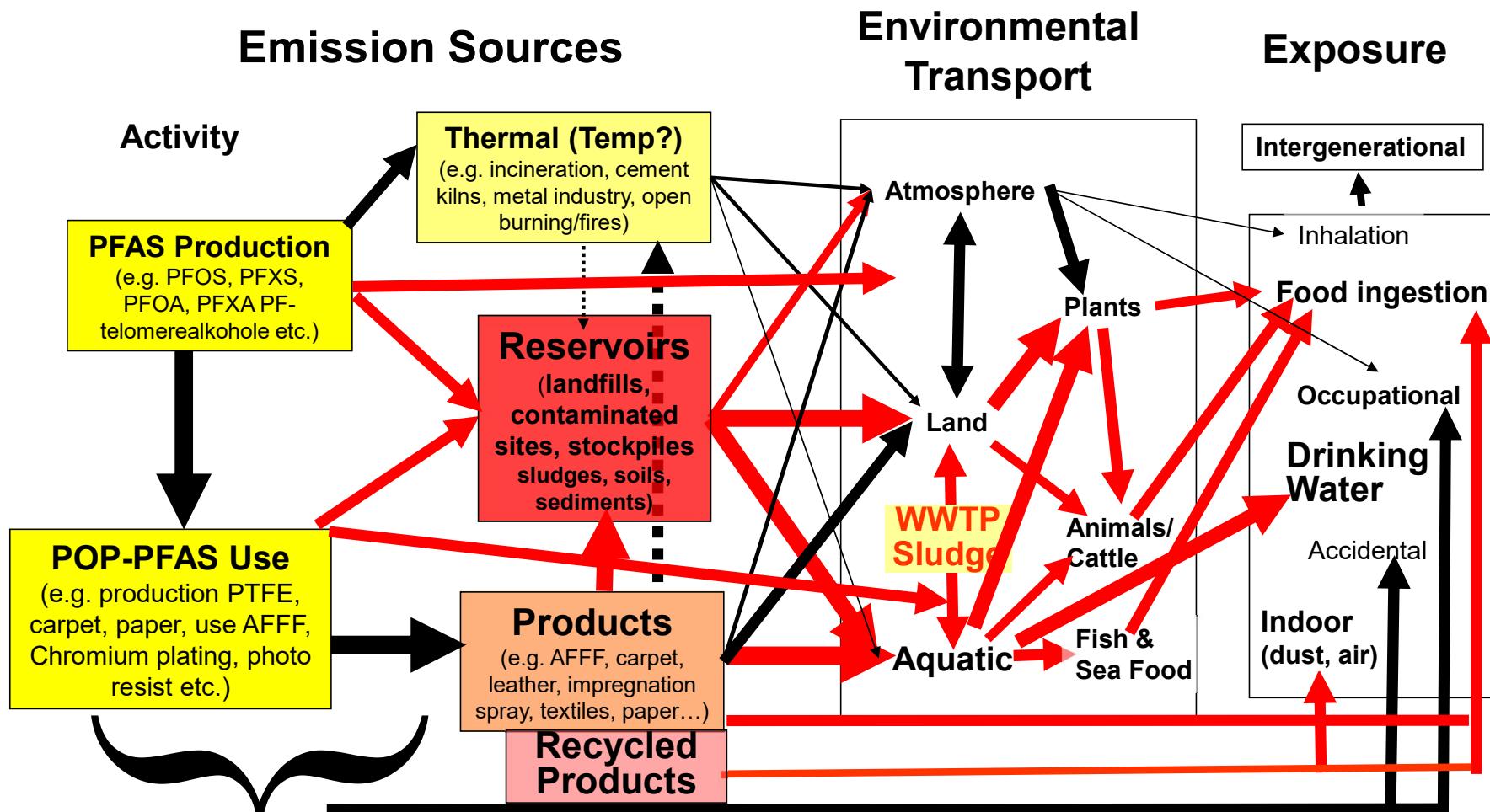
3. Life cycle management of products, stockpiles, and waste containing POP-PFASs (and other PFASs)

Objective: Knowledge and capacity built for the management of products and waste categories containing POP-PFAS, and other PFAS (GFC), as well as ESM of PFASs implemented.

Recommended activity options:

- Compilation of information of on the management situation of products and waste containing POP-PFASs and other PFAS.
- Assessment of the management and destruction option of products/stocks and waste containing POP-PFAS and other PFAS.
- Environmentally safe storage of wastes containing POP-PFASs.
- Assessment and control of POP-PFAS in affected recycling cycles including sewage sludge.
- Destruction or export of POP-PFAS-containing waste; Environmental Sound Management of other PFAS-containing products. (**Contemporary challenge even in high income countries!**)

Global Framework
on Chemicals



How can the world destroy PFAS-containing waste in an ESM?

- POP-PFAS cannot be disposed to landfills since they are water soluble and are released in leachates
- Municipal waste incinerators operating mostly **below 900°C** can currently not be considered proven for destruction of PFAS. The US Department of Defense stopped the incineration of PFAS-containing AFFF from military in 2022 and requested USEPA to develop a guidance for PFAS destruction.
- Hazardous waste incinerators demonstrated that a **temperatures of 1100°C** is sufficient to destroy POP-PFAS to **99.999%** (Basel Convention TG). However, still **some uncertainty of CF₄ formation and release** which is destroyed **only at 1400°C** and might be partly formed in the destruction of PFASs.
- However hazardous waste incinerators are quite expensive and mainly available in industrial countries. Since they are rare, also in these countries the **transport cost are high** for the **huge amount of PFAS wastes** like **carpets, textiles, automotive shredder residues (ASR), impregnated furniture and paper** and **the overall capacity is limited**.
- One **alternative facility for thermal destruction are cement kilns** destroying POP-PFAS **>99.999%** (Basel Convention TG) which should be considered for destruction of PFAS potentially also in low-/middle-income countries.

Life-Cycle of POP-PFAS, other PFASs and related products

4. Assessment and selection of alternatives to POP-PFASs

Objective: POP-PFAS alternatives in exempted/all uses are assessed by a science-based approach and POP-PFASs are substituted by the most sustainable chemical and non-chemical solution.

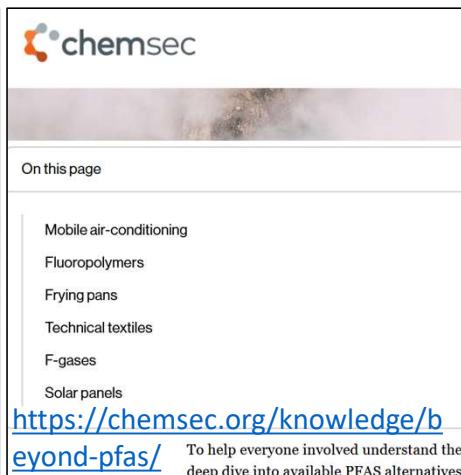
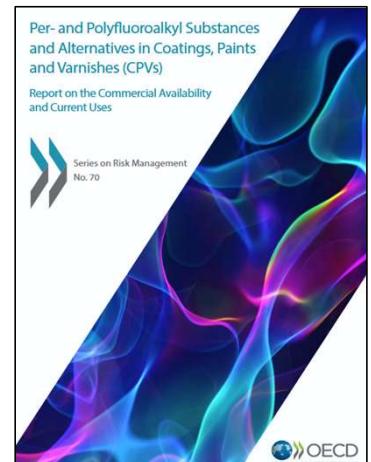
Recommended activity options:

- Compilation of information on alternatives to PFOS, PFOA, LC-PFCA and related compounds **including fluorinated and non-fluorinated alternatives.** (Consider that the BRS Secretariat and POPRC compiled information on alternatives to POP-PFAS; OECD, the ChemSec, and EU ZeroPM project are compiling information on alternatives to PFASs in major uses.)
- **Education and capacity building on alternatives assessment.**
- Selection of the most sustainable alternative chemicals and non-chemical solutions in the current used applications and implementation of substitution.

UNEP POPs/COP.19 INT/25
Annex

Draft guidance on alternatives to perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds

February 2022



 chemsec

On this page

- Mobile air-conditioning
- Fluoropolymers
- Frying pans
- Technical textiles
- F-gases
- Solar panels

<https://chemsec.org/knowledge/beyond-pfas/> To help everyone involved understand the deep dive into available PFAS alternatives.

 STOCKHOLM CONVENTION

4. Assessment and selection of alternatives to POP-PFASs

Objective: POP-PFAS alternatives in exempted/all uses are assessed by a science-based approach and POP-PFASs are substituted by the most sustainable chemical and non-chemical solution.


Recommended activity options:

- **Assessment of alternatives to POP-PFAS firefighting foams.**
- **Phase out of POP-PFAS firefighting foams and possibly phase-out all PFAS firefighting foam.** (see EU Guidance)
- **Cleaning firefighting equipment including fixed installations** when substituting with POP-PFAS/fluorine free foams.
- Assessment of destruction option of POP-PFAS and other PFAS containing firefighting foam and ESM and destruction.

https://echa.europa.eu/documents/10162/6956102/EU_guidance_for_transitioning_to_fluorine-free_firefighting_foams_en.pdf/24d79e79-a1af-dd0c-0b31-bdc2f78f08fe

Global Framework
on Chemicals

4. Assessment and selection of alternatives to POP-PFASs

Objective: POP-PFAS alternatives in exempted/all uses are assessed by a science-based approach and POP-PFASs are substituted by the most sustainable chemical and non-chemical solution.

Recommended activity option:

- **Science based assessment if any exemptions of POP-PFAS production or use is needed.**
- **Notification of the BRS Secretariat /COP on the needed of exemption** with the appropriate information (What exemption(s), estimated quantity of production/use, Purpose of production / use, reason for exemption).
- **Periodic review to assess the need for continued exemptions and assess alternatives.**
Stop exemption and use by more sustainable alternatives as soon as feasible.

BRS CONVENTIONS

BASEL CONVENTION

ROTTERDAM CONVENTION

STOCKHOLM CONVENTION

Home The Convention Procedures Implementation Countries Partners

Search

Overview
Decisions

Registers of Specific Exemptions for chemicals listed in Annex A

<https://www.pops.int/Implementation/Exemptions/AcceptablePurposes/AcceptablePurposesPFOSandPFOSF/tabid/794/Default.aspx>
<https://www.pops.int/Implementation/Exemptions/SpecificExemptions/PFOARoSE/tabid/8363/Default.aspx>

5. Application of BAT/BEP in needed exempted production/uses

Background: If POP-PFASs are produced or used in exempted uses, then BAT/BEP need to be applied for controlled production and use, and to prevent releases. Also to ensure the environmentally sound management along the life cycle of POP-PFASs.

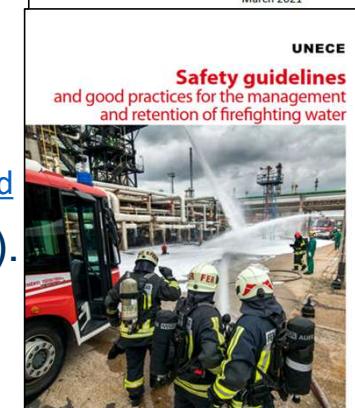
Objective: BAT/BEP is applied in exempted production and uses.

Recommended activity options:

- Define and implement **BAT/BEP for production of PFAS** including release limits and develop related control of production, releases and waste.
- Define and implement **BAT/BEP for the use of PFAS** in industries including release limits and develop related control of uses, releases and waste.
- Require the retention of firefighting water considering the UNECE guideline & environmentally sound management of the PFAS containing waste water.

<https://unece.org/environment/documents/2025/09/working-documents/safety-guidelines-and-good-practices-management-and>

- Labelling of products containing (POP-)PFAS (e.g. textiles, firefighting foam).
- Capacity building of industries and firefighters on BAT/BEP and how to minimize PFAS use and release.


UNECE/POPs/COP 16/INF/20
Annex

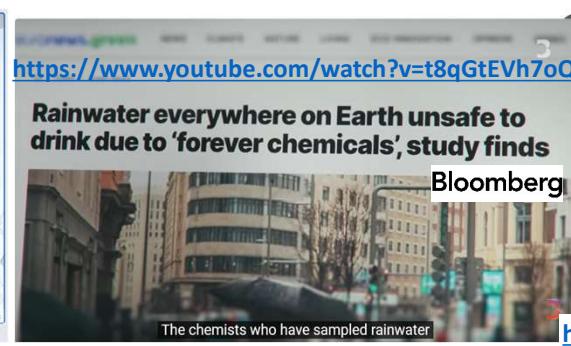
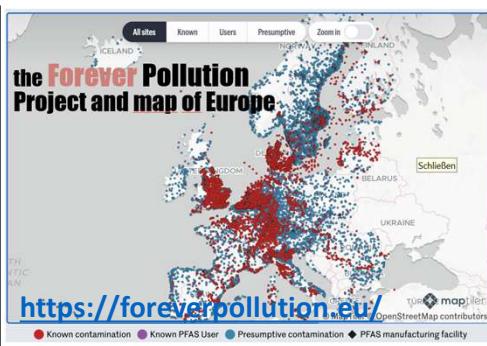
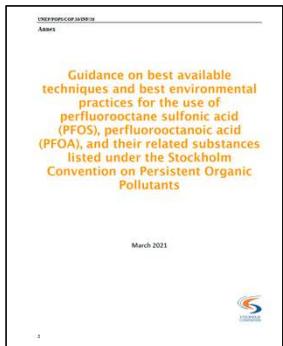
Guidance on best available techniques and best environmental practices for the use of perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and their related substances listed under the Stockholm Convention on Persistent Organic Pollutants

March 2021

UNECE

Safety guidelines
and good practices for the management and retention of firefighting water

STOCKHOLM CONVENTION




UNITED NATIONS

6. Education, training and awareness raising for stakeholder groups on POP-PFAS & other PFAS and establishing information exchange

Objective: Education and awareness of stakeholders (policy makers; workers, industries, customs, NGOs and the public) on POP-PFASs and other PFASs as an issue of concern.

Recommendation activity options:

- **Inform and sensitize policy makers on health hazards** of PFASs and the related risk for humans, the environment and for drinking water & food security and the need for management.
- **Awareness of industries using PFAS** on the risk and on the cost of future remediation.
- **Awareness of the public on health impacts and environmental pollution** as well as on alternatives of consumer products without POP-PFAS and other PFASs.
- **Development of related education & awareness materials** (considering available materials).
- Dissemination of information on POP-PFAS and other PFASs (including alternatives).

[https://en.wikipedia.org/wiki/Dark_Waters_\(2019_film\)](https://en.wikipedia.org/wiki/Dark_Waters_(2019_film))

6. Education, training and awareness raising for stakeholder groups on POP-PFAS & other PFAS and establishing information exchange

Objective: Education and awareness of stakeholders (policy makers; workers, industries, customs, NGOs and the public) on POP-PFASs and other PFASs as an issue of concern.

Recommendation activity options:

- **Inform and sensitize policy makers on health hazards of PFASs and the related risk for humans, the environment and for drinking water/food security & related need for management.**
- **Awareness of industries using PFAS on the risk and on cost of future remediation.**

The high external cost of PFAS

- **The upgrade of drinking water works in the United States to comply with the suggested drinking water limits is estimated at 47.3 billion USD** (Mische 2025)
- **The cost to remediate legacy PFAS and ongoing emissions in Europe** is estimated to a cost of over **100 billion euros per year** if PFAS emissions are not restricted (Horel & Aubert 2025).

Original article

The Forever Pollution Project: Exposing the real cost of per- and polyfluoroalkyl substances (PFAS) pollution on the environment, science, and politics with cross-border investigation

Stéphane Horel*, Raphélle Aubert

<https://foreverpollution.eu/lobbying/>

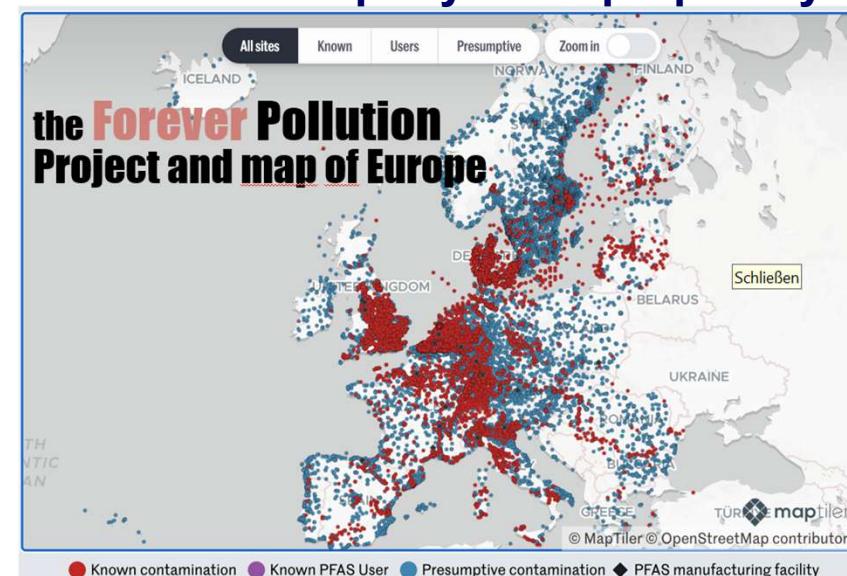
<https://foreverpollution.eu/lobbying/the-cost-methodology/>

Colorado Law [Home](#) [Print](#) [Forum](#) [Archive](#) [About](#) [Search](#) [☰](#)

THE COST OF PFAS CLEAN UP IN WATERWAYS: WHO PAYS AND HOW?

by Sarah E. Mische / in Issue 3, Volume 96 / on March 17, 2025

<https://lawreview.colorado.edu/print/volume-96/the-cost-of-pfas-clean-up-in-waterways-who-pays-and-how-sarah-e-mische/>


Awareness: Cost of POP-PFAS & short-chain PFAS management in Europe²²

A consortium of PFAS researchers and investigative journalists estimated the management costs of POP-PFAS and short-chain PFAS for Europe in two scenarios:

- In the 'legacy' scenario, where emissions cease immediately and only legacy PFAS – long-chain PFAS that received the first regulatory attention for restriction and phase out (such as PFOS and PFOA) – are remediated, then the cost is about €95 billion over 20 years.
- In the 'emerging' scenario, where emissions continue and remediation efforts include short-chain PFAS, which are difficult to deal with, then costs rise to around €2 trillion over the next 20 years. A phase out of these difficult to remediate, emerging PFAS would be needed to lower this 20-year estimate, otherwise remediation could cost over 100 billion euros per year in perpetuity.
- These calculations do not include a wide variety of unknown costs due to a lack of knowledge and data sources, meaning they are underestimated. Ongoing innovations have the potential to lower the remediation costs, but the most economical option is to lower emissions.

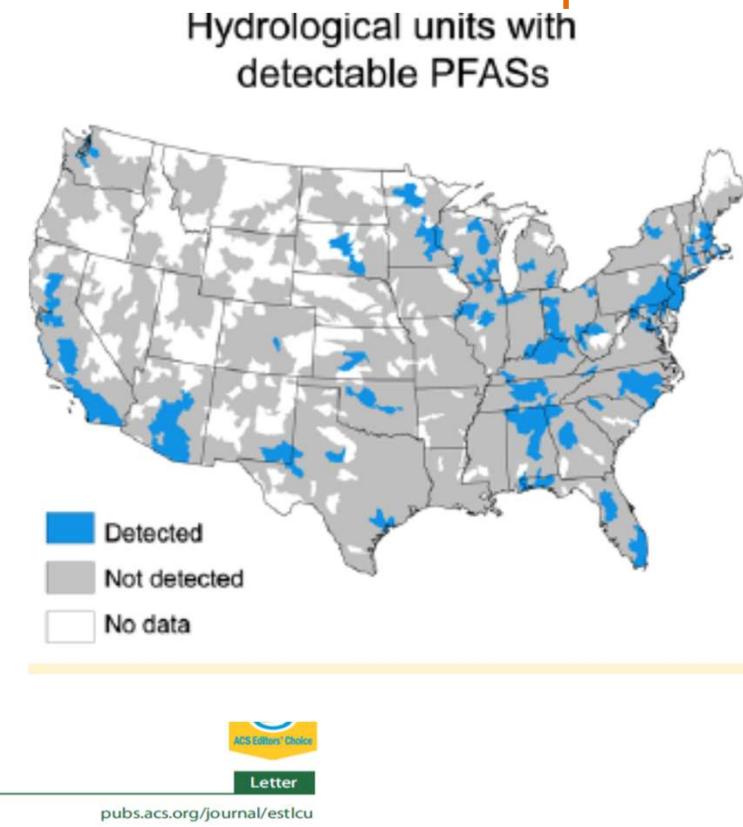
<https://foreverpollution.eu/lobbying/the-cost-of-remediation/>

<https://foreverpollution.eu/lobbying/the-cost-methodology/>

Awareness: PFAS contaminated drinking water in US and human exposure


- Based on more than 36,000 water samples collected by the U.S. EPA (2013–2015), the drinking water supplies for 6 million U.S. residents exceeded US EPA's lifetime health advisory (70 ng/L) for PFOS and PFOA at that time.
- Considering EFSA & CDC assessment, this was still 10-100 times too high (CDC 2017; EFSA 2020; Grandjean & Budtz-Jørgensen 2013).
- Danish EPA 2 ng/L Σ PFOS, PFOA, PFHxS and PFNA.
- US EPA updated interim Health Advisory 2022: PFOA 0.004 ng/L.

The Washington Post

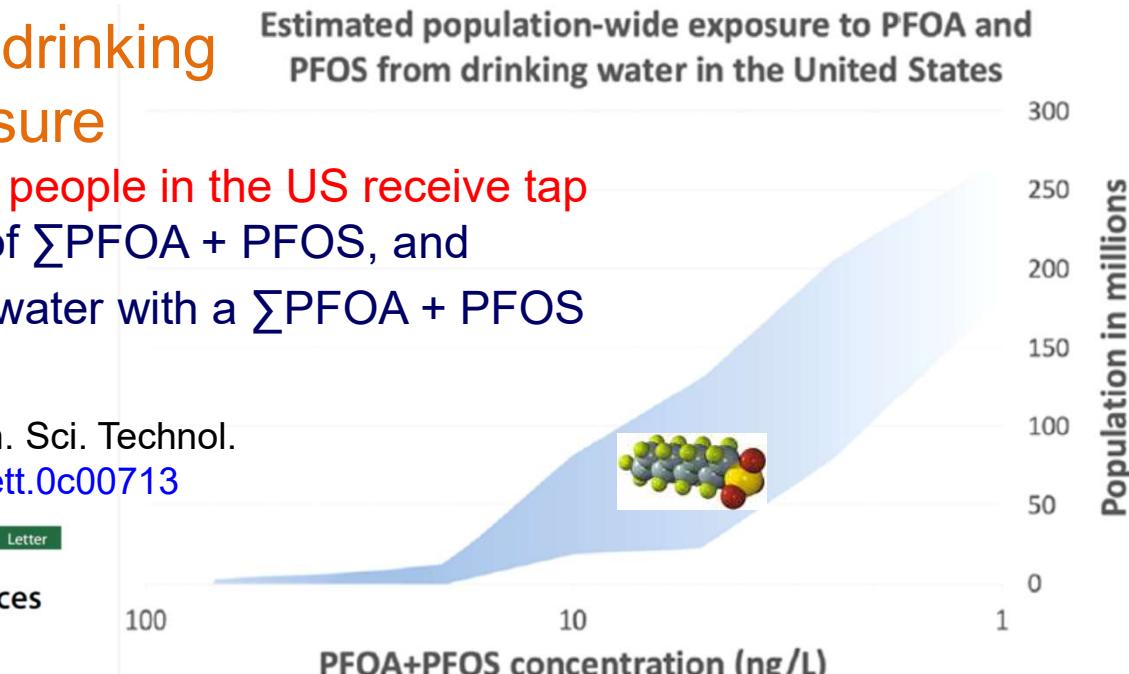

Energy and Environment

Researchers find unsafe levels of industrial chemicals in drinking water of 6 million Americans

ENVIRONMENTAL
Science & Technology **LETTERS**

Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants

Hu et al. Environ. Sci. Technol. Lett., DOI:10.1021/acs.estlett.6b00260; August 9, 2016


Awareness: PFAS contaminated drinking water in US and human exposure

- A study estimated in 2020 that 18–80 million people in the US receive tap water with 10 ng/L or greater concentration of Σ PFOA + PFOS, and
- Over 200 million people in US likely receive water with a Σ PFOA + PFOS concentration at or above 1 ng/L.

Andrews & Naidenko (2020) Environ. Sci. Technol. Lett <https://doi.org/10.1021/acs.estlett.0c00713>

pubs.acs.org/journal/estlclu

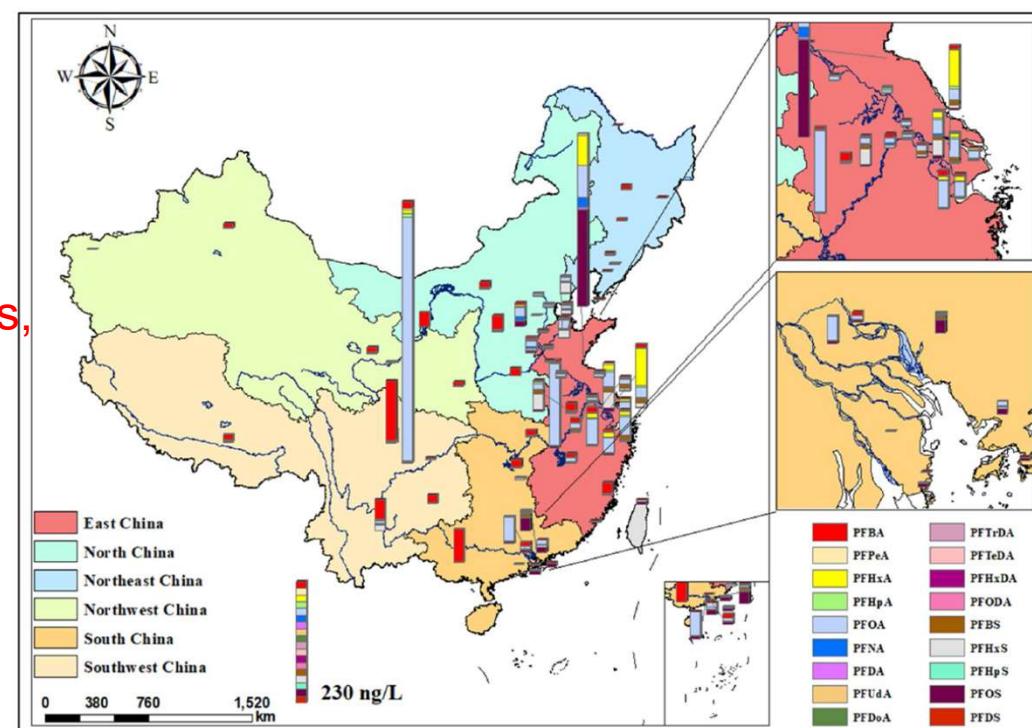
Population-Wide Exposure to Per- and Polyfluoroalkyl Substances from Drinking Water in the United States

David Q. Andrews* and Olga V. Naidenko

USEPA set Individual Maximum Contaminant Levels (MCLs) drinking water limits 4/24 and estimates that between 6% and 10% of the 66,000 public drinking water systems have to take action to reduce PFAS to meet the new standard (PFOS 4 ng/L; PFOA 4 ng/L; PFNA 10 ng/L; PFHxS 10 ng/L; GenX 10 ng/L).

All public water systems have three years to complete their initial monitoring. They must inform the public of the level of PFAS measured in their drinking water. Where PFAS is found at levels that exceed these standards, systems must implement solutions to reduce PFAS in drinking water within 5 years (update 7yr).

<https://www.epa.gov/newsreleases/biden-harris-administration-finalizes-first-ever-national-drinking-water-standard>

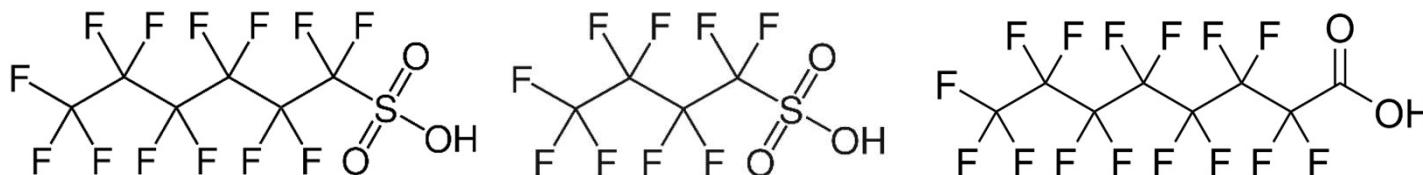

<https://www.epa.gov/newsreleases/epa-announces-it-will-keep-maximum-contaminant-levels-pfoa-pfos>

US states are estimating that for all public water systems in the US to comply with the proposed maximum levels, for PFOA and PFOS alone, it would cost ~\$47.3 billion (Mische (2025) Univ. of Colorado Law Review 96, 906-954).

Awareness: Review of PFAS Contamination in Drinking Water in China

- With colleagues from Tsinghua University (Prof. Jun Huang) we **reviewed PFAS** data from 526 drinking water samples across 66 cities in China with a total of approx. 452 million inhabitants.
- The PFAS concentrations of >20% of the studied cities, were above the maximum contaminant level issued by the state Vermont in 2019 (**20 ng/L Σ 5 PFAS**) **likely affecting 98.5 million people**, <https://dec.vermont.gov/water/drinking-water/water-quality-monitoring/pfas>
- Likely **several 100 million people in China** are above the **Danish DW limit of 2 ng/L based on EFSA TWI for Σ 4 PFAS**.

Large number of people are affected by PFAS contaminated drinking water. There is a lack of monitoring in some regions (other Asian countries, Africa, GRULAC region).



7. Assessment, management, and database of sites potentially contaminated with POP-PFAS and other PFAS (1)

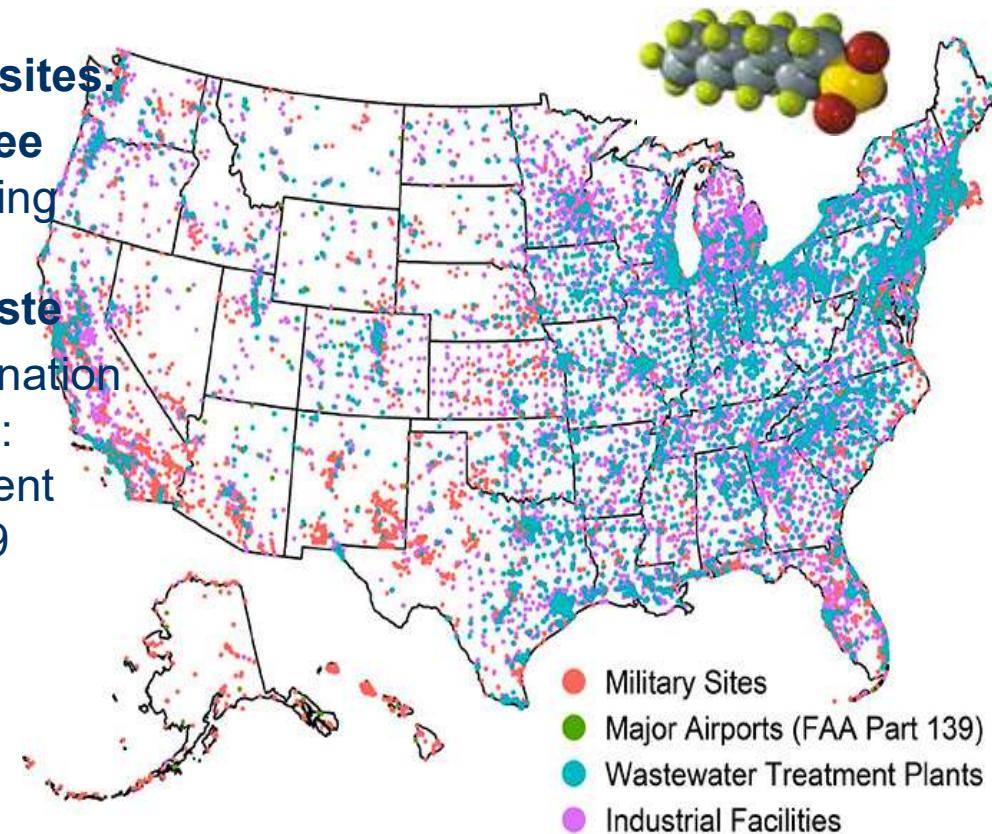
Objective: Established assessment and management of sites potentially contaminated with POP-PFASs and other PFASs to reduce exposure.

Recommended activity options

- Develop/update legislation to set criteria for determining contaminated sites and legislation on liability related to contaminated sites and clean-up (general activity on contaminated site framework).
- Develop guidelines for identification and assessment of sites contaminated with POP-PFASs and other PFASs.
- Training in identification and management of contaminated sites.
- Development of a database/map of potentially PFAS contaminated sites.
- Prioritization of the sites (risks) for further assessment and clean-up.

Bundesministerium
für Umwelt, Naturschutz,
nukleare Sicherheit
und Verbraucherschutz

Last updated: 21 January 2022

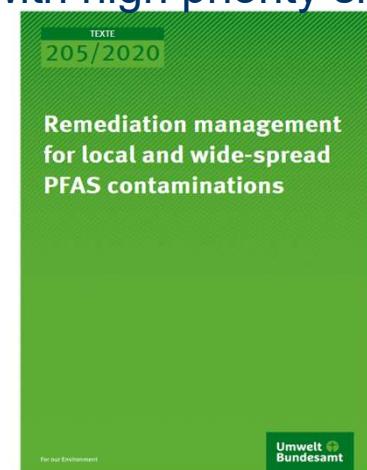
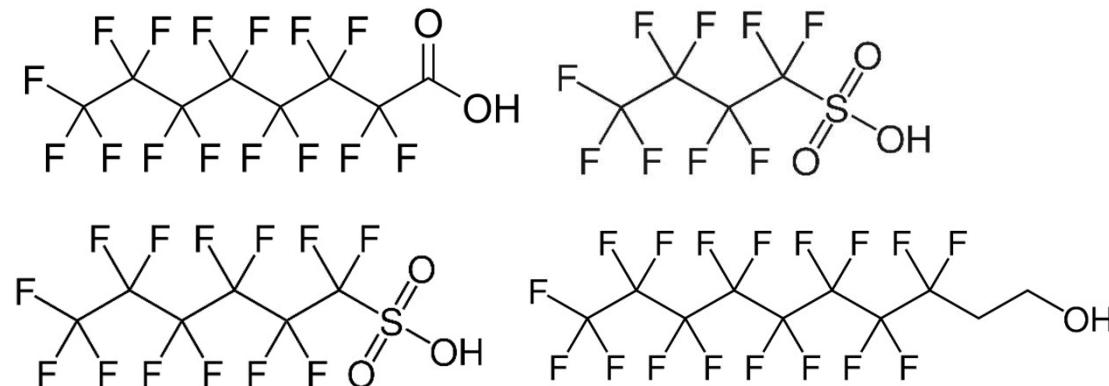

Guidelines for PFAS assessment

Recommendations for the uniform nationwide assessment of soil and water contamination and for the disposal of soil material containing PFAS

Developing a national map of (potentially) PFAS contaminated sites

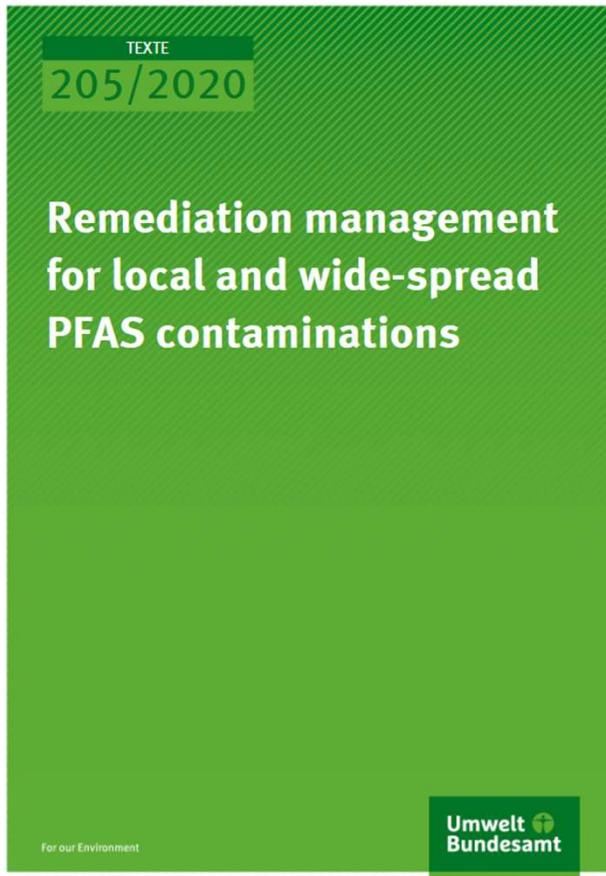
Presumptive Contamination Sites (n=57,412)

- A methodology has been developed to establish a national inventory of presumptive contaminated sites.
- PFAS contamination can be presumed around three types of facilities: (1) fluorinated aqueous film-forming foam (AFFF) discharge sites, (2) certain industrial facilities, & (3) sites related to PFAS-containing waste
- For the United States a map of presumptive contamination sites has been developed and identified 57,412 sites: 49,145 industrial facilities, 4,255 waste-water treatment plants, 3,493 current or former military sites, and 519 major airports.

7. Assessment, management, and database of sites potentially contaminated with POP-PFAS and other PFAS (2)

Objective: Established assessment and management of sites potentially contaminated with POP-PFASs and other PFASs to reduce exposure.


Recommended activity options:

- Analytical confirmation of POP-PFAS (and other PFAS) contamination for the identified locations (according to a prioritization list).
- Develop guidelines and strategies for the environmentally sound management of POP-PFAS (GFC synergy: all PFAS) contaminated sites.
- Take measures to secure the contaminated sites to stop human exposure & environmental releases.
- Identification of clean-up measures and initiate clean-up procedures starting with high priority sites.

National and international guidance documents on PFAS site management

- Some governments developed guidance documents to assess & manage PFAS contaminated sites.
- Recently also a SC guidance on BAT/BEP for POP contaminated sites has been published by UNEP.

 Bundesministerium
 für Umwelt, Naturschutz, nukleare Sicherheit
 und Verbraucherschutz

Last updated: 21 January 2022

Guidelines for PFAS assessment

Recommendations for the uniform nationwide assessment of soil and water contamination and for the disposal of soil material containing PFAS

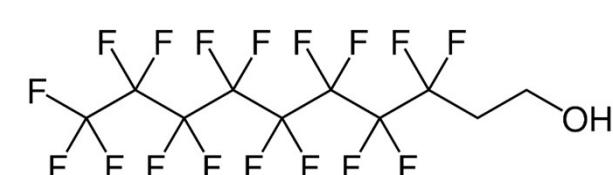
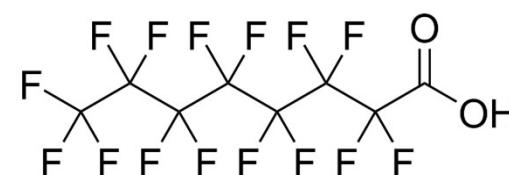
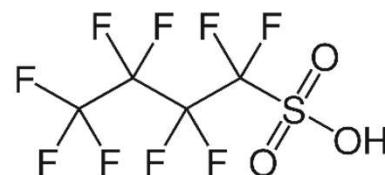
https://www.bmu.de/fileadmin/Daten_BMU/Download_PDF/Bodenschutz/pfas_leitfaden_2022_en_bf.pdf

Guidance on best available techniques and best environmental practices for the management of sites contaminated with persistent organic pollutants

<https://www.pops.int/Implementation/BATandBEP/POPscontaminatedsites/Guidance/tabid/9649/Default.aspx>

February 2025

 STOCKHOLM
 CONVENTION

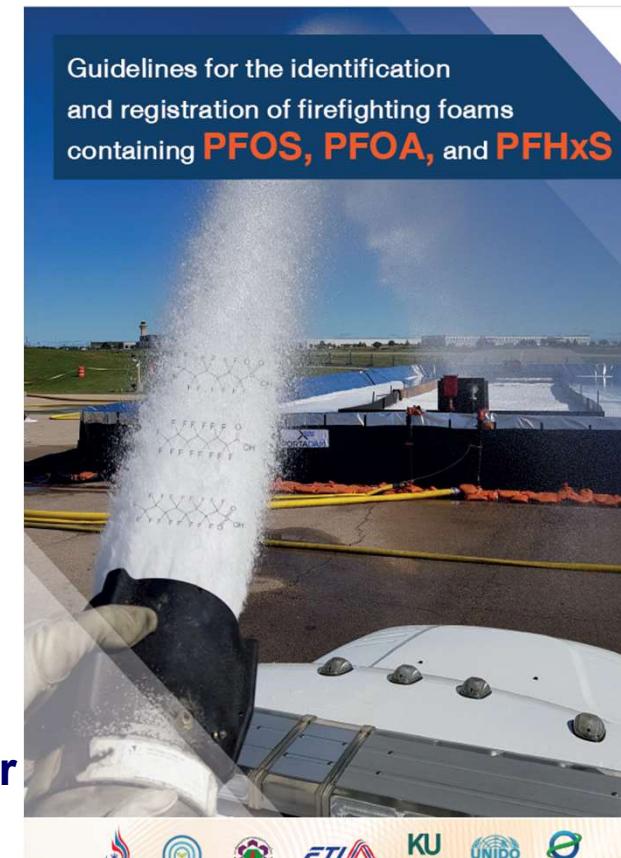
<https://www.umweltbundesamt.de/en/publikationen/remediation-management-for-local-wide-spread-pfas>

8. Analysis and monitoring of PFOS, PFOA, PFHxS and other PFAS in priority areas

Objective: Established monitoring approach for POP-PFASs and other PFASs in priority areas.

Recommended activity options:

- **Assessment of options for monitoring of POP-PFAS and other PFAS (international collaboration or development of own capacity?)**
- Establishing a monitoring frame for POP-PFAS and other PFAS (own or cooperation)
- **Monitoring of major drinking water supplies.**
- **Improvement of the inventory** by monitoring where **knowledge gaps** have been found (Tier 3).
- Monitoring of products, articles and waste known to possibly contain POP-PFAS & other PFAS.
- Monitoring biota and soil samples for POP-PFAS and other PFAS especially at potentially contaminated sites (see contaminated site action plan).


Some monitoring is necessary for the PFAS inventory

- Some monitoring is necessary for a robust POP-PFASs inventory.
- For example for many **FFF/other suspected firefighting foams** no information on the type of **PFAS is available**. Within a UNIDO/GEF project, Thailand developed a guidance for monitoring **PFAS in firefighting foams** and developed the analytical capacity.
- **PFAS measurements of water are also necessary for the inventory of contaminated water reservoirs and drinking water.**
- South Africa developed PFAS monitoring capacity in the country (Tswane University) and monitored major drinking water for PFAS.

Distribution pattern, source apportionment, and health risk assessment of per- and polyfluoroalkyl substances in drinking water treatment plants in South Africa

Seth M. Rapoo¹, Mathoto L. Thaoge-Zwane¹, and Jonathan O. Okonkwo^{2,*}

Environ. Toxicol. Chem. 2025, 44(8), 2133–2142
<https://doi.org/10.1093/etocnl/vgaf136>

- Monitoring products & waste for POP-PFAS is also challenging for industrial countries due to the complexity of PFAS compounds.

Thank you for your attention ! Questions?

More Information <https://www.thegef.org/>; https://en.wikipedia.org/wiki/Triple_planetary_crisis

Basel Convention: www.basel.int

Rotterdam Convention: www.pic.int

Stockholm Convention: <http://chm.pops.int/>

Montreal Protocol/Vienna Convention: <http://ozone.unep.org>

GFC: <https://www.chemicalsframework.org/> **FAO:** www.fao.org **WHO:** www.who.int/

Climate Convention: <https://unfccc.int/> **Biodiversity Convention:** <https://www.cbd.int/>

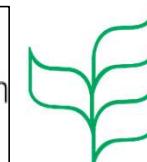
OECD/IOMC: <http://www.oecd.org/chemicalsafety/>

Science: <https://www.ipcc.ch/>; <https://www.ipbes.net/>; <https://www.unep.org/isp-cwp>; <https://www.ipcp.ch/>

Industry: <http://www.suschem.org/>; <https://icca-chem.org/>; <https://cefic.org/>

NGO: www.ipcp.ch; www.ipen.org; www.ciel.org; www.ban.org; www.chemsec.org; www.wecf.org

Better-world-links: <http://www.betterworldlinks.org/>


Global Framework
on Chemicals

GREEN GROWTH
Knowledge Partnership

United Nations
Framework Convention on
Climate Change

Convention on
Biological Diversity